Do you want to publish a course? Click here

PERT: A Progressively Region-based Network for Scene Text Removal

105   0   0.0 ( 0 )
 Added by Yuxin Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Scene text removal (STR) contains two processes: text localization and background reconstruction. Through integrating both processes into a single network, previous methods provide an implicit erasure guidance by modifying all pixels in the entire image. However, there exists two problems: 1) the implicit erasure guidance causes the excessive erasure to non-text areas; 2) the one-stage erasure lacks the exhaustive removal of text region. In this paper, we propose a ProgrEssively Region-based scene Text eraser (PERT), introducing an explicit erasure guidance and performing balanced multi-stage erasure for accurate and exhaustive text removal. Firstly, we introduce a new region-based modification strategy (RegionMS) to explicitly guide the erasure process. Different from previous implicitly guided methods, RegionMS performs targeted and regional erasure on only text region, and adaptively perceives stroke-level information to improve the integrity of non-text areas with only bounding box level annotations. Secondly, PERT performs balanced multi-stage erasure with several progressive erasing stages. Each erasing stage takes an equal step toward the text-erased image to ensure the exhaustive erasure of text regions. Compared with previous methods, PERT outperforms them by a large margin without the need of adversarial loss, obtaining SOTA results with high speed (71 FPS) and at least 25% lower parameter complexity. Code is available at https://github.com/wangyuxin87/PERT.



rate research

Read More

Recent learning-based approaches show promising performance improvement for scene text removal task. However, these methods usually leave some remnants of text and obtain visually unpleasant results. In this work, we propose a novel end-to-end framework based on accurate text stroke detection. Specifically, we decouple the text removal problem into text stroke detection and stroke removal. We design a text stroke detection network and a text removal generation network to solve these two sub-problems separately. Then, we combine these two networks as a processing unit, and cascade this unit to obtain the final model for text removal. Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art approaches for locating and erasing scene text. Since current publicly available datasets are all synthetic and cannot properly measure the performance of different methods, we therefore construct a new real-world dataset, which will be released to facilitate the relevant research.
89 - Zhi Qiao , Yu Zhou , Jin Wei 2021
Nowadays, scene text recognition has attracted more and more attention due to its various applications. Most state-of-the-art methods adopt an encoder-decoder framework with attention mechanism, which generates text autoregressively from left to right. Despite the convincing performance, the speed is limited because of the one-by-one decoding strategy. As opposed to autoregressive models, non-autoregressive models predict the results in parallel with a much shorter inference time, but the accuracy falls behind the autoregressive counterpart considerably. In this paper, we propose a Parallel, Iterative and Mimicking Network (PIMNet) to balance accuracy and efficiency. Specifically, PIMNet adopts a parallel attention mechanism to predict the text faster and an iterative generation mechanism to make the predictions more accurate. In each iteration, the context information is fully explored. To improve learning of the hidden layer, we exploit the mimicking learning in the training phase, where an additional autoregressive decoder is adopted and the parallel decoder mimics the autoregressive decoder with fitting outputs of the hidden layer. With the shared backbone between the two decoders, the proposed PIMNet can be trained end-to-end without pre-training. During inference, the branch of the autoregressive decoder is removed for a faster speed. Extensive experiments on public benchmarks demonstrate the effectiveness and efficiency of PIMNet. Our code will be available at https://github.com/Pay20Y/PIMNet.
Arbitrary text appearance poses a great challenge in scene text recognition tasks. Existing works mostly handle with the problem in consideration of the shape distortion, including perspective distortions, line curvature or other style variations. Therefore, methods based on spatial transformers are extensively studied. However, chromatic difficulties in complex scenes have not been paid much attention on. In this work, we introduce a new learnable geometric-unrelated module, the Structure-Preserving Inner Offset Network (SPIN), which allows the color manipulation of source data within the network. This differentiable module can be inserted before any recognition architecture to ease the downstream tasks, giving neural networks the ability to actively transform input intensity rather than the existing spatial rectification. It can also serve as a complementary module to known spatial transformations and work in both independent and collaborative ways with them. Extensive experiments show that the use of SPIN results in a significant improvement on multiple text recognition benchmarks compared to the state-of-the-arts.
Text detection, the key technology for understanding scene text, has become an attractive research topic. For detecting various scene texts, researchers propose plenty of detectors with different advantages: detection-based models enjoy fast detection speed, and segmentation-based algorithms are not limited by text shapes. However, for most intelligent systems, the detector needs to detect arbitrary-shaped texts with high speed and accuracy simultaneously. Thus, in this study, we design an efficient pipeline named as MT, which can detect adhesive arbitrary-shaped texts with only a single binary mask in the inference stage. This paper presents the contributions on three aspects: (1) a light-weight detection framework is designed to speed up the inference process while keeping high detection accuracy; (2) a multi-perspective feature module is proposed to learn more discriminative representations to segment the mask accurately; (3) a multi-factor constraints IoU minimization loss is introduced for training the proposed model. The effectiveness of MT is evaluated on four real-world scene text datasets, and it surpasses all the state-of-the-art competitors to a large extent.
Recently, video scene text detection has received increasing attention due to its comprehensive applications. However, the lack of annotated scene text video datasets has become one of the most important problems, which hinders the development of video scene text detection. The existing scene text video datasets are not large-scale due to the expensive cost caused by manual labeling. In addition, the text instances in these datasets are too clear to be a challenge. To address the above issues, we propose a tracking based semi-automatic labeling strategy for scene text videos in this paper. We get semi-automatic scene text annotation by labeling manually for the first frame and tracking automatically for the subsequent frames, which avoid the huge cost of manual labeling. Moreover, a paired low-quality scene text video dataset named Text-RBL is proposed, consisting of raw videos, blurry videos, and low-resolution videos, labeled by the proposed convenient semi-automatic labeling strategy. Through an averaging operation and bicubic down-sampling operation over the raw videos, we can efficiently obtain blurry videos and low-resolution videos paired with raw videos separately. To verify the effectiveness of Text-RBL, we propose a baseline model combined with the text detector and tracker for video scene text detection. Moreover, a failure detection scheme is designed to alleviate the baseline model drift issue caused by complex scenes. Extensive experiments demonstrate that Text-RBL with paired low-quality videos labeled by the semi-automatic method can significantly improve the performance of the text detector in low-quality scenes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا