Do you want to publish a course? Click here

PIMNet: A Parallel, Iterative and Mimicking Network for Scene Text Recognition

90   0   0.0 ( 0 )
 Added by Zhi Qiao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Nowadays, scene text recognition has attracted more and more attention due to its various applications. Most state-of-the-art methods adopt an encoder-decoder framework with attention mechanism, which generates text autoregressively from left to right. Despite the convincing performance, the speed is limited because of the one-by-one decoding strategy. As opposed to autoregressive models, non-autoregressive models predict the results in parallel with a much shorter inference time, but the accuracy falls behind the autoregressive counterpart considerably. In this paper, we propose a Parallel, Iterative and Mimicking Network (PIMNet) to balance accuracy and efficiency. Specifically, PIMNet adopts a parallel attention mechanism to predict the text faster and an iterative generation mechanism to make the predictions more accurate. In each iteration, the context information is fully explored. To improve learning of the hidden layer, we exploit the mimicking learning in the training phase, where an additional autoregressive decoder is adopted and the parallel decoder mimics the autoregressive decoder with fitting outputs of the hidden layer. With the shared backbone between the two decoders, the proposed PIMNet can be trained end-to-end without pre-training. During inference, the branch of the autoregressive decoder is removed for a faster speed. Extensive experiments on public benchmarks demonstrate the effectiveness and efficiency of PIMNet. Our code will be available at https://github.com/Pay20Y/PIMNet.



rate research

Read More

Although recent works based on deep learning have made progress in improving recognition accuracy on scene text recognition, how to handle low-quality text images in end-to-end deep networks remains a research challenge. In this paper, we propose an Iterative Fusion based Recognizer (IFR) for low quality scene text recognition, taking advantage of refined text images input and robust feature representation. IFR contains two branches which focus on scene text recognition and low quality scene text image recovery respectively. We utilize an iterative collaboration between two branches, which can effectively alleviate the impact of low quality input. A feature fusion module is proposed to strengthen the feature representation of the two branches, where the features from the Recognizer are Fused with image Restoration branch, referred to as RRF. Without changing the recognition network structure, extensive quantitative and qualitative experimental results show that the proposed method significantly outperforms the baseline methods in boosting the recognition accuracy of benchmark datasets and low resolution images in TextZoom dataset.
Linguistic knowledge is of great benefit to scene text recognition. However, how to effectively model linguistic rules in end-to-end deep networks remains a research challenge. In this paper, we argue that the limited capacity of language models comes from: 1) implicitly language modeling; 2) unidirectional feature representation; and 3) language model with noise input. Correspondingly, we propose an autonomous, bidirectional and iterative ABINet for scene text recognition. Firstly, the autonomous suggests to block gradient flow between vision and language models to enforce explicitly language modeling. Secondly, a novel bidirectional cloze network (BCN) as the language model is proposed based on bidirectional feature representation. Thirdly, we propose an execution manner of iterative correction for language model which can effectively alleviate the impact of noise input. Additionally, based on the ensemble of iterative predictions, we propose a self-training method which can learn from unlabeled images effectively. Extensive experiments indicate that ABINet has superiority on low-quality images and achieves state-of-the-art results on several mainstream benchmarks. Besides, the ABINet trained with ensemble self-training shows promising improvement in realizing human-level recognition. Code is available at https://github.com/FangShancheng/ABINet.
Arbitrary text appearance poses a great challenge in scene text recognition tasks. Existing works mostly handle with the problem in consideration of the shape distortion, including perspective distortions, line curvature or other style variations. Therefore, methods based on spatial transformers are extensively studied. However, chromatic difficulties in complex scenes have not been paid much attention on. In this work, we introduce a new learnable geometric-unrelated module, the Structure-Preserving Inner Offset Network (SPIN), which allows the color manipulation of source data within the network. This differentiable module can be inserted before any recognition architecture to ease the downstream tasks, giving neural networks the ability to actively transform input intensity rather than the existing spatial rectification. It can also serve as a complementary module to known spatial transformations and work in both independent and collaborative ways with them. Extensive experiments show that the use of SPIN results in a significant improvement on multiple text recognition benchmarks compared to the state-of-the-arts.
Scene text recognition has been an important, active research topic in computer vision for years. Previous approaches mainly consider text as 1D signals and cast scene text recognition as a sequence prediction problem, by feat of CTC or attention based encoder-decoder framework, which is originally designed for speech recognition. However, different from speech voices, which are 1D signals, text instances are essentially distributed in 2D image spaces. To adhere to and make use of the 2D nature of text for higher recognition accuracy, we extend the vanilla CTC model to a second dimension, thus creating 2D-CTC. 2D-CTC can adaptively concentrate on most relevant features while excluding the impact from clutters and noises in the background; It can also naturally handle text instances with various forms (horizontal, oriented and curved) while giving more interpretable intermediate predictions. The experiments on standard benchmarks for scene text recognition, such as IIIT-5K, ICDAR 2015, SVP-Perspective, and CUTE80, demonstrate that the proposed 2D-CTC model outperforms state-of-the-art methods on the text of both regular and irregular shapes. Moreover, 2D-CTC exhibits its superiority over prior art on training and testing speed. Our implementation and models of 2D-CTC will be made publicly available soon later.
Recent adversarial learning research has achieved very impressive progress for modelling cross-domain data shifts in appearance space but its counterpart in modelling cross-domain shifts in geometry space lags far behind. This paper presents an innovative Geometry-Aware Domain Adaptation Network (GA-DAN) that is capable of modelling cross-domain shifts concurrently in both geometry space and appearance space and realistically converting images across domains with very different characteristics. In the proposed GA-DAN, a novel multi-modal spatial learning technique is designed which converts a source-domain image into multiple images of different spatial views as in the target domain. A new disentangled cycle-consistency loss is introduced which balances the cycle consistency in appearance and geometry spaces and improves the learning of the whole network greatly. The proposed GA-DAN has been evaluated for the classic scene text detection and recognition tasks, and experiments show that the domain-adapted images achieve superior scene text detection and recognition performance while applied to network training.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا