Do you want to publish a course? Click here

Modeling the outcome of supernova explosions in binary population synthesis using the stellar compactness

106   0   0.0 ( 0 )
 Added by Davide Gerosa
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Following the collapse of their cores, some of the massive binary stars that populate our Universe are expected to form merging binaries composed of black holes and neutron stars. Gravitational-wave observations of the resulting compact binaries can reveal precious details on the inner workings of the supernova mechanism and the subsequent formation of compact objects. Within the framework of the population-synthesis code MOBSE, we present the implementation of a new supernova model that relies on the compactness of the collapsing star. The model has two free parameters, namely the compactness threshold that separates the formation of black holes and that of neutron stars, and the fraction of the envelope that falls back onto the newly formed black holes. We compare this model extensively against other prescriptions that are commonly used in binary population synthesis. We find that the cleanest signatures of the role of the pre-supernova stellar compactness are (i) the relative formation rates of the different kinds of compact binaries, which mainly depend on the compactness threshold parameter, and (ii) the location of the upper edge of the mass gap between the lightest black holes and the heaviest neutron stars, which mainly depends on the fallback fraction.

rate research

Read More

The fastest-spinning neutron stars in low-mass X-ray binaries, despite having undergone millions of years of accretion, have been observed to spin well below the Keplerian break-up frequency. We simulate the spin evolution of synthetic populations of accreting neutron stars in order to assess whether gravitational waves can explain this behaviour and provide the distribution of spins that is observed. We model both persistent and transient accretion and consider two gravitational-wave-production mechanisms that could be present in these systems: thermal mountains and unstable $r$-modes. We consider the case of no gravitational-wave emission and observe that this does not match well with observation. We find evidence for gravitational waves being able to provide the observed spin distribution; the most promising mechanisms being a permanent quadrupole, thermal mountains and unstable $r$-modes. However, based on the resultant distributions alone it is difficult to distinguish between the competing mechanisms.
Focusing on the remnant black holes after merging binary black holes, we show that ringdown gravitational waves of Population III binary black holes mergers can be detected with the rate of $5.9-500~{rm events~yr^{-1}}~({rm SFR_p}/ (10^{-2.5}~M_odot~{rm yr^{-1}~Mpc^{-3}})) cdot ({rm [f_b/(1+f_b)]/0.33})$ for various parameters and functions. This rate is estimated for the events with SNR$>8$ for the second generation gravitational wave detectors such as KAGRA. Here, ${rm SFR_p}$ and ${rm f_b}$ are the peak value of the Population III star formation rate and the fraction of binaries, respectively. When we consider only the events with SNR$>35$, the event rate becomes $0.046-4.21~{rm events~yr^{-1}}~({rm SFR_p}/ (10^{-2.5}~M_odot~{rm yr^{-1}~Mpc^{-3}})) cdot ({rm [f_b/(1+f_b)]/0.33})$. This suggest that for remnant black holes spin $q_f>0.95$ we have the event rate with SNR$>35$ less than $0.037~{rm events~yr^{-1}}~({rm SFR_p}/ (10^{-2.5}~M_odot~{rm yr^{-1}~Mpc^{-3}})) cdot ({rm [f_b/(1+f_b)]/0.33})$, while it is $3-30~{rm events~yr^{-1}}~({rm SFR_p}/ (10^{-2.5}~M_odot~{rm yr^{-1}~Mpc^{-3}})) cdot ({rm [f_b/(1+f_b)]/0.33})$ for the third generation detectors such as Einstein Telescope. If we detect many Population III binary black holes merger, it may be possible to constrain the Population III binary evolution paths not only by the mass distribution but also by the spin distribution.
163 - Ilya Mandel , Alison Farmer 2018
The LIGO and Virgo detectors have recently directly observed gravitational waves from several mergers of pairs of stellar-mass black holes, as well as from one merging pair of neutron stars. These observations raise the hope that compact object mergers could be used as a probe of stellar and binary evolution, and perhaps of stellar dynamics. This colloquium-style article summarizes the existing observations, describes theoretical predictions for formation channels of merging stellar-mass black-hole binaries along with their rates and observable properties, and presents some of the prospects for gravitational-wave astronomy.
We present a new method to extract statistical constraints on the progenitor properties and formation channels of individual gravitational-wave sources. Although many different models have been proposed to explain the binary black holes detected by the LIGO Scientific and Virgo Collaboration (LVC), formation through isolated binary evolution remains the best explored channel. Under the assumption of formation through binary evolution, we use the statistical wrapper dart_board coupled with the rapid binary evolution code COSMIC to model the progenitor of GW150914, the first gravitational-wave signal detected by the LVC. Our Bayesian method combines the likelihood generated from the gravitational-wave signal with a prior describing the population of stellar binaries, and the Universes star-formation and metallicity evolution. We find that the dominant evolutionary channel for GW150914 did not involve a common-envelope phase, but instead the system most probably (70%-90%) formed through stable mass transfer. This result is robust against variations of various model parameters, and it is reversed only when dynamical instability in binaries becomes more likely when a strict condition favoring common envelopes is adopted. Our analysis additionally provides a quantitative description of the progenitors relevant to each channel.
We report on the impact of a probabilistic prescription for compact remnant masses and kicks on massive binary population synthesis. We find that this prescription populates the putative mass gap between neutron stars and black holes with low-mass black holes. However, evolutionary effects reduce the number of X-ray binary candidates with low-mass black holes, consistent with the dearth of such systems in the observed sample. We further find that this prescription is consistent with the formation of heavier binary neutron stars such as GW190425, but over-predicts the masses of Galactic double neutron stars. The revised natal kicks, particularly increased ultra-stripped supernova kicks, do not directly explain the observed Galactic double neutron star orbital period--eccentricity distribution. Finally, this prescription allows for the formation of systems similar to the recently discovered extreme mass ratio binary GW190814, but only if we allow for the survival of binaries in which the common envelope is initiated by a donor crossing the Hertzsprung gap, contrary to our standard model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا