Do you want to publish a course? Click here

Targeted modeling of GW150914s binary black hole source with dart_board

68   0   0.0 ( 0 )
 Added by Jeff Andrews
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new method to extract statistical constraints on the progenitor properties and formation channels of individual gravitational-wave sources. Although many different models have been proposed to explain the binary black holes detected by the LIGO Scientific and Virgo Collaboration (LVC), formation through isolated binary evolution remains the best explored channel. Under the assumption of formation through binary evolution, we use the statistical wrapper dart_board coupled with the rapid binary evolution code COSMIC to model the progenitor of GW150914, the first gravitational-wave signal detected by the LVC. Our Bayesian method combines the likelihood generated from the gravitational-wave signal with a prior describing the population of stellar binaries, and the Universes star-formation and metallicity evolution. We find that the dominant evolutionary channel for GW150914 did not involve a common-envelope phase, but instead the system most probably (70%-90%) formed through stable mass transfer. This result is robust against variations of various model parameters, and it is reversed only when dynamical instability in binaries becomes more likely when a strict condition favoring common envelopes is adopted. Our analysis additionally provides a quantitative description of the progenitors relevant to each channel.

rate research

Read More

203 - Michela Mapelli 2021
We review the main physical processes that lead to the formation of stellar binary black holes (BBHs) and to their merger. BBHs can form from the isolated evolution of massive binary stars. The physics of core-collapse supernovae and the process of common envelope are two of the main sources of uncertainty about this formation channel. Alternatively, two black holes can form a binary by dynamical encounters in a dense star cluster. The dynamical formation channel leaves several imprints on the mass, spin and orbital properties of BBHs.
We discuss results from simulations of black hole formation in failing core-collapse supernovae performed with the code GR1D, a new open-source Eulerian spherically-symmetric general-relativistic hydrodynamics code. GR1D includes rotation in an approximate way (1.5D), comes with multiple finite-temperature nuclear equations of state (EOS), and treats neutrinos in the post-core-bounce phase via a 3-flavor leakage scheme and a heating prescription. We chose the favored K_0=220 MeV-variant of the Lattimer & Swesty (1990) EOS and present collapse calculations using the progenitor models of Limongi & Chieffi (2006). We show that there is no direct (or ``prompt) black hole formation in the collapse of ordinary massive stars (8 M_Sun ~< M_ZAMS ~< 100 M_Sun) and present first results from black hole formation simulations that include rotation.
The LIGO-Virgo collaboration recently reported the properties of GW190412, a binary black hole merger with unequal component masses (mass ratio $0.25^{+0.06}_{-0.04}$ when using the EOBNR PHM approximant) and a non-vanishing effective spin aligned with the orbital angular momentum. They used uninformative priors to infer that the more massive black hole had a dimensionless spin magnitude between 0.17 and 0.59 at 90% confidence. We argue that, within the context of isolated binary evolution, it is more natural to assume a priori that the first-born, more massive black hole has a negligible spin, while the spin of the less massive black hole is preferentially aligned with the orbital angular momentum if it is spun up by tides. Under this astrophysically motivated prior, we conclude that the lower mass black hole had a dimensionless spin component between 0.64 and 0.99 along the orbital angular momentum.
A large number of binary black holes (BBHs) with longer orbital periods are supposed to exist as progenitors of BBH mergers recently discovered with gravitational wave (GW) detectors. In our previous papers, we proposed to search for such BBHs in triple systems through the radial-velocity modulation of the tertiary orbiting star. If the tertiary is a pulsar, high precision and cadence observations of its arrival time enable an unambiguous characterization of the pulsar -- BBH triples located at several kpc, which are inaccessible with the radial velocity of stars. The present paper shows that such inner BBHs can be identified through the short-term R{o}mer delay modulation, on the order of $10$ msec for our fiducial case, a triple consisting of $20~M_odot$ BBH and $1.4~M_odot$ pulsar with $P_mathrm{in}=10$ days and $P_mathrm{out}=100$ days. If the relativistic time delays are measured as well, one can determine basically all the orbital parameters of the triple. For instance, this method is applicable to inner BBHs of down to $sim 1$ hr orbital periods if the orbital period of the tertiary pulsar is around several days. Inner BBHs with $lesssim 1$ hr orbital period emit the GW detectable by future space-based GW missions including LISA, DECIGO, and BBO, and very short inner BBHs with sub-second orbital period can be even probed by the existing ground-based GW detectors. Therefore, our proposed methodology provides a complementary technique to search for inner BBHs in triples, if exist at all, in the near future.
Binary black hole mergers are of great interest to the astrophysics community, not least because of their promise to test general relativity in the highly dynamic, strong field regime. Detections of gravitational waves from these sources by LIGO and Virgo have garnered widespread media and public attention. Among these sources, precessing systems (with misaligned black-hole spin/orbital angular momentum) are of particular interest because of the rich dynamics they offer. However, these systems are, in turn, more complex compared to nonprecessing systems, making them harder to model or develop intuition about. Visualizations of numerical simulations of precessing systems provide a means to understand and gain insights about these systems. However, since these simulations are very expensive, they can only be performed at a small number of points in parameter space. We present binaryBHexp, a tool that makes use of surrogate models of numerical simulations to generate on-the-fly interactive visualizations of precessing binary black holes. These visualizations can be generated in a few seconds, and at any point in the 7-dimensional parameter space of the underlying surrogate models. With illustrative examples, we demonstrate how this tool can be used to learn about precessing binary black hole systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا