Do you want to publish a course? Click here

Binary population synthesis with probabilistic remnant mass and kick prescriptions

253   0   0.0 ( 0 )
 Added by Ilya Mandel
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the impact of a probabilistic prescription for compact remnant masses and kicks on massive binary population synthesis. We find that this prescription populates the putative mass gap between neutron stars and black holes with low-mass black holes. However, evolutionary effects reduce the number of X-ray binary candidates with low-mass black holes, consistent with the dearth of such systems in the observed sample. We further find that this prescription is consistent with the formation of heavier binary neutron stars such as GW190425, but over-predicts the masses of Galactic double neutron stars. The revised natal kicks, particularly increased ultra-stripped supernova kicks, do not directly explain the observed Galactic double neutron star orbital period--eccentricity distribution. Finally, this prescription allows for the formation of systems similar to the recently discovered extreme mass ratio binary GW190814, but only if we allow for the survival of binaries in which the common envelope is initiated by a donor crossing the Hertzsprung gap, contrary to our standard model.



rate research

Read More

While planets are commonly discovered around main-sequence stars, the processes leading to their formation are still far from being understood. Current planet population synthesis models, which aim to describe the planet formation process from the protoplanetary disk phase to the time exoplanets are observed, rely on prescriptions for the underlying properties of protoplanetary disks where planets form and evolve. The recent development in measuring disk masses and disk-star interaction properties, i.e., mass accretion rates, in large samples of young stellar objects demand a more careful comparison between the models and the data. We performed an initial critical assessment of the assumptions made by planet synthesis population models by looking at the relation between mass accretion rates and disk masses in the models and in the currently available data. We find that the currently used disk models predict mass accretion rate in line with what is measured, but with a much lower spread of values than observed. This difference is mainly because the models have a smaller spread of viscous timescales than what is needed to reproduce the observations. We also find an overabundance of weakly accreting disks in the models where giant planets have formed with respect to observations of typical disks. We suggest that either fewer giant planets have formed in reality or that the prescription for planet accretion predicts accretion on the planets that is too high. Finally, the comparison of the properties of transition disks with large cavities confirms that in many of these objects the observed accretion rates are higher than those predicted by the models. On the other hand, PDS70, a transition disk with two detected giant planets in the cavity, shows mass accretion rates well in line with model predictions.
Following the collapse of their cores, some of the massive binary stars that populate our Universe are expected to form merging binaries composed of black holes and neutron stars. Gravitational-wave observations of the resulting compact binaries can reveal precious details on the inner workings of the supernova mechanism and the subsequent formation of compact objects. Within the framework of the population-synthesis code MOBSE, we present the implementation of a new supernova model that relies on the compactness of the collapsing star. The model has two free parameters, namely the compactness threshold that separates the formation of black holes and that of neutron stars, and the fraction of the envelope that falls back onto the newly formed black holes. We compare this model extensively against other prescriptions that are commonly used in binary population synthesis. We find that the cleanest signatures of the role of the pre-supernova stellar compactness are (i) the relative formation rates of the different kinds of compact binaries, which mainly depend on the compactness threshold parameter, and (ii) the location of the upper edge of the mass gap between the lightest black holes and the heaviest neutron stars, which mainly depends on the fallback fraction.
We performed population synthesis simulations of Population III binary stars with Maxwellian kick velocity distribution when MGCOs (Mass Gap Compact Objects with mass 2--5$,M_{odot}$) are formed. We found that for eight kick velocity dispersion models of $sigma_{rm k}=0$--$500$ km/s, the mean mass of black hole (BH)-MGCO binary is $sim (30 ,M_odot,,2.6 ,M_odot)$. In numerical data of our simulations, we found the existence of BH-MGCO binary with mass $(22.9 ,M_odot,,2.5 ,M_odot)$ which looks like GW190814.
In the case of zero-metal (population III or Pop III) stars, we show that the total mass of binary black holes from binary Pop III star evolution can be $sim 150 ,M_{odot}$, which agrees with the mass of the binary black hole GW190521 recently discovered by LIGO/Virgo. The event rate of such binary black hole mergers is estimated as 0.13--0.66$~(rho_{rm SFR}/(6times10^5~M_{odot}/{rm Mpc}^3))~Err_{rm sys}~{rm yr^{-1}~Gpc^{-3}}$, where $rho_{rm SFR}$ and $Err_{rm sys}$ are the cumulative comoving mass density of Pop III stars depending on star formation rate and the systematic errors depending on uncertainties in the Pop III binary parameters, respectively. The event rate in our fiducial model with $rho_{rm SFR}=6times10^5~M_{odot}/{rm Mpc}^3$ and $ Err_{rm sys}=1$ is 0.13--0.66$~{rm yr^{-1}~Gpc^{-3}}$, which is consistent with the observed value of 0.02--0.43$~{rm yr^{-1}~Gpc^{-3}}$.
The stellar initial mass function (IMF) plays a crucial role in determining the number of surviving stars in galaxies, the chemical composition of the interstellar medium, and the distribution of light in galaxies. A key unsolved question is whether the IMF is universal in time and space. Here we use state-of-the-art results of stellar evolution to show that the IMF of our Galaxy made a transition from an IMF dominated by massive stars to the present-day IMF at an early phase of the Galaxy formation. Updated results from stellar evolution in a wide range of metallicities have been implemented in a binary population synthesis code, and compared with the observations of carbon-enhanced metal-poor (CEMP) stars in our Galaxy. We find that applying the present-day IMF to Galactic halo stars causes serious contradictions with four observable quantities connected with the evolution of AGB stars. Furthermore, a comparison between our calculations and the observations of CEMP stars may help us to constrain the transition metallicity for the IMF which we tentatively set at [Fe/H] = -2. A novelty of the current study is the inclusion of mass loss suppression in intermediate-mass AGB stars at low-metallicity. This significantly reduces the overproduction of nitrogen-enhanced stars that was a major problem in using the high-mass star dominated IMF in previous studies. Our results also demonstrate that the use of the present day IMF for all time in chemical evolution models results in the overproduction of Type I.5 supernovae. More data on stellar abundances will help to understand how the IMF has changed and what caused such a transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا