Do you want to publish a course? Click here

A platform for cognitive monitoring of neurosurgical patients during hospitalization

50   0   0.0 ( 0 )
 Added by Omer Ashmaig
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

Intracranial recordings in epilepsy patients are increasingly utilized to gain insight into the electrophysiological mechanisms of human cognition. There are currently several practical limitations to conducting research with these patients, including patient and researcher availability and the cognitive abilities of patients, which limit the amount of task-related data that can be collected. Prior studies have synchronized clinical audio, video, and neural recordings to understand naturalistic behaviors, but these recordings are centered on the patient to understand their seizure semiology and thus do not capture and synchronize audiovisual stimuli from tasks. Here, we describe a platform for cognitive monitoring of neurosurgical patients during their hospitalization that benefits both patients and researchers alike. We provide the full specifications for this system and describe some example use cases in perception, memory, and sleep research. Our system opens up new avenues to collect more data per patient using real-world tasks, affording new possibilities to conduct longitudinal studies of the electrophysiological basis of human cognition under naturalistic conditions.

rate research

Read More

Cognitive dissonance is the stress that comes from holding two conflicting thoughts simultaneously in the mind, usually arising when people are asked to choose between two detrimental or two beneficial options. In view of the well-established role of emotions in decision making, here we investigate whether the conventional structural models used to represent the relationships among basic emotions, such as the Circumplex model of affect, can describe the emotions of cognitive dissonance as well. We presented a questionnaire to 34 anonymous participants, where each question described a decision to be made among two conflicting motivations and asked the participants to rate analogically the pleasantness and the intensity of the experienced emotion. We found that the results were compatible with the predictions of the Circumplex model for basic emotions.
In this paper we present a brain-inspired cognitive architecture that incorporates sensory processing, classification, contextual prediction, and emotional tagging. The cognitive architecture is implemented as three modular web-servers, meaning that it can be deployed centrally or across a network for servers. The experiments reveal two distinct operations of behaviour, namely high- and low-salience modes of operations, which closely model attention in the brain. In addition to modelling the cortex, we have demonstrated that a bio-inspired architecture introduced processing efficiencies. The software has been published as an open source platform, and can be easily extended by future research teams. This research lays the foundations for bio-realistic attention direction and sensory selection, and we believe that it is a key step towards achieving a bio-realistic artificial intelligent system.
We evaluated the cognitive status of visually impaired patients referred to low vision rehabilitation (LVR) based on a standard cognitive battery and a new evaluation tool, named the COGEVIS, which can be used to assess patients with severe visual deficits. We studied patients aged 60 and above, referred to the LVR Hospital in Paris. Neurological and cognitive evaluations were performed in an expert memory center. Thirty-eight individuals, 17 women and 21 men with a mean age of 70.3 $pm$ 1.3 years and a mean visual acuity of 0.12 $pm$ 0.02, were recruited over a one-year period. Sixty-three percent of participants had normal cognitive status. Cognitive impairment was diagnosed in 37.5% of participants. The COGEVIS score cutoff point to screen for cognitive impairment was 24 (maximum score of 30) with a sensitivity of 66.7% and a specificity of 95%. Evaluation following 4 months of visual rehabilitation showed an improvement of Instrumental Activities of Daily Living (p = 0 004), National Eye Institute Visual Functioning Questionnaire (p = 0 035), and Montgomery-{AA}sberg Depression Rating Scale (p = 0 037). This study introduces a new short test to screen for cognitive impairment in visually impaired patients.
Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a emph{multi-step} cognitive task involving with consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed base on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and behaves obvious differences restricted to order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse function connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.
The Mozart effect refers to scientific data on short-term improvement on certain mental tasks after listening to Mozart, and also to its popularized version that listening to Mozart makes you smarter (Tomatis, 1991; Wikipedia, 2012). Does Mozart effect point to a fundamental cognitive function of music? Would such an effect of music be due to the hedonicity, a fundamental dimension of mental experience? The present paper explores a recent hypothesis that music helps to tolerate cognitive dissonances and thus enabled accumulation of knowledge and human cultural evolution (Perlovsky, 2010, 2012). We studied whether the influence of music is related to its hedonicity and whether pleasant or unpleasant music would influence scholarly test performance and cognitive dissonance. Specific hypotheses evaluated here are that during a test students experience contradictory cognitions that cause cognitive dissonances. If some music helps to tolerate cognitive dissonances, then first, this music should increase the duration during which participants can tolerate stressful conditions while evaluating test choices. Second, this should result in improved performance. These hypotheses are tentatively confirmed in the reported experiments as the agreeable music was correlated with better performance above that under indifferent or unpleasant music. It follows that music likely performs a fundamental cognitive function explaining the origin and evolution of musical ability considered previously a mystery.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا