Do you want to publish a course? Click here

When quantum state tomography benefits from willful ignorance

75   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that quantum state tomography with perfect knowledge of the measurement apparatus proves to be, in some instances, inferior to strategies discarding all information about the measurement at hand, as in the case of data pattern tomography. In those scenarios, the larger uncertainty about the measurement is traded for the smaller uncertainty about the reconstructed signal. This effect is more pronounced for minimal or nearly minimal informationally complete measurement settings, which are of utmost practical importance.



rate research

Read More

It is commonly-accepted wisdom that more information is better, and that information should never be ignored. Here we argue, using both a Bayesian and a non-Bayesian analysis, that in some situations you are better off ignoring information if your uncertainty is represented by a set of probability measures. These include situations in which the information is relevant for the prediction task at hand. In the non-Bayesian analysis, we show how ignoring information avoids dilation, the phenomenon that additional pieces of information sometimes lead to an increase in uncertainty. In the Bayesian analysis, we show that for small sample sizes and certain prediction tasks, the Bayesian posterior based on a noninformative prior yields worse predictions than simply ignoring the given information.
We propose and experimentally demonstrate a quantum state tomography protocol that generalizes the Wallentowitz-Vogel-Banaszek-Wodkiewicz point-by-point Wigner function reconstruction. The full density operator of an arbitrary quantum state is efficiently reconstructed in the Fock basis, using semidefinite programming, after interference with a small set of calibrated coherent states. This new protocol is resource- and computationally efficient, is robust against noise, does not rely on approximate state displacements, and ensures the physicality of results.
Quantum state tomography is a key process in most quantum experiments. In this work, we employ quantum machine learning for state tomography. Given an unknown quantum state, it can be learned by maximizing the fidelity between the output of a variational quantum circuit and this state. The number of parameters of the variational quantum circuit grows linearly with the number of qubits and the circuit depth, so that only polynomial measurements are required, even for highly-entangled states. After that, a subsequent classical circuit simulator is used to transform the information of the target quantum state from the variational quantum circuit into a familiar format. We demonstrate our method by performing numerical simulations for the tomography of the ground state of a one-dimensional quantum spin chain, using a variational quantum circuit simulator. Our method is suitable for near-term quantum computing platforms, and could be used for relatively large-scale quantum state tomography for experimentally relevant quantum states.
We develop a practical quantum tomography protocol and implement measurements of pure states of ququarts realized with polarization states of photon pairs (biphotons). The method is based on an optimal choice of the measuring schemes parameters that provides better quality of reconstruction for the fixed set of statistical data. A high accuracy of the state reconstruction (above 0.99) indicates that developed methodology is adequate.
The exact reconstruction of many-body quantum systems is one of the major challenges in modern physics, because it is impractical to overcome the exponential complexity problem brought by high-dimensional quantum many-body systems. Recently, machine learning techniques are well used to promote quantum information research and quantum state tomography has been also developed by neural network generative models. We propose a quantum state tomography method, which is based on Bidirectional Gated Recurrent Unit neural network (BiGRU), to learn and reconstruct both easy quantum states and hard quantum states in this paper. We are able to use fewer measurement samples in our method to reconstruct these quantum states and obtain high fidelity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا