Do you want to publish a course? Click here

Bidirectional information flow quantum state tomography

118   0   0.0 ( 0 )
 Added by Shenggen Zheng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The exact reconstruction of many-body quantum systems is one of the major challenges in modern physics, because it is impractical to overcome the exponential complexity problem brought by high-dimensional quantum many-body systems. Recently, machine learning techniques are well used to promote quantum information research and quantum state tomography has been also developed by neural network generative models. We propose a quantum state tomography method, which is based on Bidirectional Gated Recurrent Unit neural network (BiGRU), to learn and reconstruct both easy quantum states and hard quantum states in this paper. We are able to use fewer measurement samples in our method to reconstruct these quantum states and obtain high fidelity.



rate research

Read More

We provide a detailed analysis of the question: how many measurement settings or outcomes are needed in order to identify a quantum system which is constrained by prior information? We show that if the prior information restricts the system to a set of lower dimensionality, then topological obstructions can increase the required number of outcomes by a factor of two over the number of real parameters needed to characterize the system. Conversely, we show that almost every measurement becomes informationally complete with respect to the constrained set if the number of outcomes exceeds twice the Minkowski dimension of the set. We apply the obtained results to determine the minimal number of outcomes of measurements which are informationally complete with respect to states with rank constraints. In particular, we show that 4d-4 measurement outcomes (POVM elements) is enough in order to identify all pure states in a d-dimensional Hilbert space, and that the minimal number is at most 2 log_2(d) smaller than this upper bound.
We propose and experimentally demonstrate a quantum state tomography protocol that generalizes the Wallentowitz-Vogel-Banaszek-Wodkiewicz point-by-point Wigner function reconstruction. The full density operator of an arbitrary quantum state is efficiently reconstructed in the Fock basis, using semidefinite programming, after interference with a small set of calibrated coherent states. This new protocol is resource- and computationally efficient, is robust against noise, does not rely on approximate state displacements, and ensures the physicality of results.
This review serves as a concise introductory survey of modern compressive tomography developed since 2019. These are schemes meant for characterizing arbitrary low-rank quantum objects, be it an unknown state, a process or detector, using minimal measuring resources (hence compressive) without any emph{a priori} assumptions (rank, sparsity, eigenbasis, emph{etc}.) about the quantum object. This article contains a reasonable amount of technical details for the quantum-information community to start applying the methods discussed here. To facilitate the understanding of formulation logic and physics of compressive tomography, the theoretical concepts and important numerical results (both new and cross-referenced) shall be presented in a pedagogical manner.
Quantum state tomography is a key process in most quantum experiments. In this work, we employ quantum machine learning for state tomography. Given an unknown quantum state, it can be learned by maximizing the fidelity between the output of a variational quantum circuit and this state. The number of parameters of the variational quantum circuit grows linearly with the number of qubits and the circuit depth, so that only polynomial measurements are required, even for highly-entangled states. After that, a subsequent classical circuit simulator is used to transform the information of the target quantum state from the variational quantum circuit into a familiar format. We demonstrate our method by performing numerical simulations for the tomography of the ground state of a one-dimensional quantum spin chain, using a variational quantum circuit simulator. Our method is suitable for near-term quantum computing platforms, and could be used for relatively large-scale quantum state tomography for experimentally relevant quantum states.
We develop a practical quantum tomography protocol and implement measurements of pure states of ququarts realized with polarization states of photon pairs (biphotons). The method is based on an optimal choice of the measuring schemes parameters that provides better quality of reconstruction for the fixed set of statistical data. A high accuracy of the state reconstruction (above 0.99) indicates that developed methodology is adequate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا