Do you want to publish a course? Click here

Variational Quantum Circuits for Quantum State Tomography

135   0   0.0 ( 0 )
 Added by Chu Guo
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Quantum state tomography is a key process in most quantum experiments. In this work, we employ quantum machine learning for state tomography. Given an unknown quantum state, it can be learned by maximizing the fidelity between the output of a variational quantum circuit and this state. The number of parameters of the variational quantum circuit grows linearly with the number of qubits and the circuit depth, so that only polynomial measurements are required, even for highly-entangled states. After that, a subsequent classical circuit simulator is used to transform the information of the target quantum state from the variational quantum circuit into a familiar format. We demonstrate our method by performing numerical simulations for the tomography of the ground state of a one-dimensional quantum spin chain, using a variational quantum circuit simulator. Our method is suitable for near-term quantum computing platforms, and could be used for relatively large-scale quantum state tomography for experimentally relevant quantum states.



rate research

Read More

131 - Owen Lockwood , Mei Si 2020
The development of quantum computational techniques has advanced greatly in recent years, parallel to the advancements in techniques for deep reinforcement learning. This work explores the potential for quantum computing to facilitate reinforcement learning problems. Quantum computing approaches offer important potential improvements in time and space complexity over traditional algorithms because of its ability to exploit the quantum phenomena of superposition and entanglement. Specifically, we investigate the use of quantum variational circuits, a form of quantum machine learning. We present our techniques for encoding classical data for a quantum variational circuit, we further explore pure and hybrid quantum algorithms for DQN and Double DQN. Our results indicate both hybrid and pure quantum variational circuit have the ability to solve reinforcement learning tasks with a smaller parameter space. These comparison are conducted with two OpenAI Gym environments: CartPole and Blackjack, The success of this work is indicative of a strong future relationship between quantum machine learning and deep reinforcement learning.
Quantum process tomography is an experimental technique to fully characterize an unknown quantum process. Standard quantum process tomography suffers from exponentially scaling of the number of measurements with the increasing system size. In this work, we put forward a quantum machine learning algorithm which approximately encodes the unknown unitary quantum process into a relatively shallow depth parametric quantum circuit. We demonstrate our method by reconstructing the unitary quantum processes resulting from the quantum Hamiltonian evolution and random quantum circuits up to $8$ qubits. Results show that those quantum processes could be reconstructed with high fidelity, while the number of input states required are at least $2$ orders of magnitude less than required by the standard quantum process tomography.
The variational quantum eigensolver is one of the most promising approaches for performing chemistry simulations using noisy intermediate-scale quantum (NISQ) processors. The efficiency of this algorithm depends crucially on the ability to prepare multi-qubit trial states on the quantum processor that either include, or at least closely approximate, the actual energy eigenstates of the problem being simulated while avoiding states that have little overlap with them. Symmetries play a central role in determining the best trial states. Here, we present efficient state preparation circuits that respect particle number, total spin, spin projection, and time-reversal symmetries. These circuits contain the minimal number of variational parameters needed to fully span the appropriate symmetry subspace dictated by the chemistry problem while avoiding all irrelevant sectors of Hilbert space. We show how to construct these circuits for arbitrary numbers of orbitals, electrons, and spin quantum numbers, and we provide explicit decompositions and gate counts in terms of standard gate sets in each case. We test our circuits in quantum simulations of the $H_2$ and $LiH$ molecules and find that they outperform standard state preparation methods in terms of both accuracy and circuit depth.
Quantum State Tomography is the task of determining an unknown quantum state by making measurements on identical copies of the state. Current algorithms are costly both on the experimental front -- requiring vast numbers of measurements -- as well as in terms of the computational time to analyze those measurements. In this paper, we address the problem of analysis speed and flexibility, introducing textit{Neural Adaptive Quantum State Tomography} (NA-QST), a machine learning based algorithm for quantum state tomography that adapts measurements and provides orders of magnitude faster processing while retaining state-of-the-art reconstruction accuracy. Our algorithm is inspired by particle swarm optimization and Bayesian particle-filter based adaptive methods, which we extend and enhance using neural networks. The resampling step, in which a bank of candidate solutions -- particles -- is refined, is in our case learned directly from data, removing the computational bottleneck of standard methods. We successfully replace the Bayesian calculation that requires computational time of $O(mathrm{poly}(n))$ with a learned heuristic whose time complexity empirically scales as $O(log(n))$ with the number of copies measured $n$, while retaining the same reconstruction accuracy. This corresponds to a factor of a million speedup for $10^7$ copies measured. We demonstrate that our algorithm learns to work with basis, symmetric informationally complete (SIC), as well as other types of POVMs. We discuss the value of measurement adaptivity for each POVM type, demonstrating that its effect is significant only for basis POVMs. Our algorithm can be retrained within hours on a single laptop for a two-qubit situation, which suggests a feasible time-cost when extended to larger systems. It can also adapt to a subset of possible states, a choice of the type of measurement, and other experimental details.
We develop a practical quantum tomography protocol and implement measurements of pure states of ququarts realized with polarization states of photon pairs (biphotons). The method is based on an optimal choice of the measuring schemes parameters that provides better quality of reconstruction for the fixed set of statistical data. A high accuracy of the state reconstruction (above 0.99) indicates that developed methodology is adequate.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا