Do you want to publish a course? Click here

Probing the Topological Surface States through Magnetoresistance and Ultrafast Charge Carrier Dynamics in (Bi/Sb)2Te3

81   0   0.0 ( 0 )
 Added by Veer Awana Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological insulators with their topological protected surface states are highly promising quantum materials. In this article the micro-flakes of single-crystalline topological insulators Bi2Te3 and Sb2Te3 are explored through physical parameter measurement at low temperatures and thereby the charge carrier dynamics are investigated at 5K to study the various optical transitions related to these surface states. The magnetoresistance is experimentally investigated at temperatures of 5K and 100K for a field range of 1Tesla. The occurrence of the weak anti-localization effect predicts the presence of topologically protected surface states in the systems. Further, the ultrafast femtosecond transient reflectance spectroscopy is performed at different temperatures, varying from a room temperature (300K) to a low temperature of 5K, to find the TSS related transitions at low temperatures.



rate research

Read More

We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi$_2$Te$_3$ following a femtosecond laser excitation. Using time and angle resolved photoelectron spectroscopy, we provide a direct real-time visualisation of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few ps are necessary for the Dirac cone non-equilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.
We present energy-momentum mapping of surface Dirac photocurrent in the topological insulator Sb$_2$Te$_3$ by means of time- and angle-resolved two-photon photoemission spectroscopy combined with polarization-variable mid-infrared pulse laser. It is demonstrated that the direct optical transition from the occupied to the unoccupied part of the surface Dirac-cone permits the linear and circular photogalvanic effect which thereby enables us to coherently control the surface electric-current by laser polarization. Moreover, the surface current mapping directly visualizes ultrafast current dynamics in the Dirac cone in the time domain. We unravel the ultrafast intraband relaxation dynamics of the inelastic scattering and momentum scattering separately. Our observations pave the pathway for coherent optical control over surface Dirac electrons in topological insulators.
573 - J. Qi , X. Chen , W. Yu 2010
Ultrafast time-resolved differential reflectivity of Bi2Se3 crystals is studied using optical pump-probe spectroscopy. Three distinct relaxation processes are found to contribute to the initial transient reflectivity changes. The deduced relaxation timescale and the sign of the reflectivity change suggest that electron-phonon interactions and defect-induced charge trapping are the underlying mechanisms for the three processes. After the crystal is exposed to air, the relative strength of these processes is altered and becomes strongly dependent on the excitation photon energy.
149 - Y. M. Dai , J. Bowlan , H. Li 2015
Ultrafast optical pump-probe spectroscopy is used to track carrier dynamics in the large magnetoresistance material WTe$_{2}$. Our experiments reveal a fast relaxation process occurring on a sub-picosecond time scale that is caused by electron-phonon thermalization, allowing us to extract the electron-phonon coupling constant. An additional slower relaxation process, occurring on a time scale of $sim$5-15 picoseconds, is attributed to phonon-assisted electron-hole recombination. As the temperature decreases from 300 K, the timescale governing this process increases due to the reduction of the phonon population. However, below $sim$50 K, an unusual decrease of the recombination time sets in, most likely due to a change in the electronic structure that has been linked to the large magnetoresistance observed in this material.
The carrier dynamics of photoexcited electrons in the vicinity of the surface of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy measurements, coupled with Monte Carlo simulations of THz emission, revealed that the surface electric field of GaAs reverses after passivation. The conductivity of photoexcited electrons was determined via optical-pump THz-probe spectroscopy, and was found to double after passivation. These experiments demonstrate that passivation significantly reduces the surface state density and surface recombination velocity of GaAs. Finally, we have demonstrated that passivation leads to an enhancement in the power radiated by photoconductive switch THz emitters, thereby showing the important influence of surface chemistry on the performance of ultrafast THz photonic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا