No Arabic abstract
In photonic neural network a key building block is the perceptron. Here, we describe and demonstrate a complex-valued photonic perceptron that combines time and space multiplexing in a fully passive silicon photonics integrated circuit. An input time dependent bit sequence is broadcasted into a few delay lines where the relative phases are trained by particle swarm algorithms toward the given task. Since only the phases of the propagating optical modes are trained, signal attenuation in the perceptron due to amplitude modulation is avoided. The perceptron performs binary pattern recognition and few bit delayed XOR operations up to 16 Gbps (limited by the used electronics) with Bit Error Rates as low as $10^{-6}$. The perceptron is fully integrated, silicon based, scalable, and can be used as a building block in large neural networks.
Massive multiple-input multiple-output (MIMO) systems are considered as one of the leading technologies employed in the next generations of wireless communication networks (5G), which promise to provide higher spectral efficiency, lower latency, and more reliability. Due to the massive number of devices served by the base stations (BS) equipped with large antenna arrays, massive-MIMO systems need to perform high-dimensional signal processing in a considerably short amount of time. The computational complexity of such data processing, while satisfying the energy and latency requirements, is beyond the capabilities of the conventional widely-used digital electronics-based computing, i.e., Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs). In this paper, the speed and lossless propagation of light is exploited to introduce a photonic computing approach that addresses the high computational complexity required by massive-MIMO systems. The proposed computing approach is based on photonic implementation of multiply and accumulate (MAC) operation achieved by broadcast-and-weight (B&W) architecture. The B&W protocol is limited to real and positive values to perform MAC operations. In this work, preprocessing steps are developed to enable the proposed photonic computing architecture to accept any arbitrary values as the input. This is a requirement for wireless communication systems that typically deal with complex values. Numerical analysis shows that the performance of the wireless communication system is not degraded by the proposed photonic computing architecture, while it provides significant improvements in time and energy efficiency for massive-MIMO systems as compared to the most powerful Graphics Processing Units (GPUs).
The subset sum problem is a typical NP-complete problem that is hard to solve efficiently in time due to the intrinsic superpolynomial-scaling property. Increasing the problem size results in a vast amount of time consuming in conventionally available computers. Photons possess the unique features of extremely high propagation speed, weak interaction with environment and low detectable energy level, therefore can be a promising candidate to meet the challenge by constructing an a photonic computer computer. However, most of optical computing schemes, like Fourier transformation, require very high operation precision and are hard to scale up. Here, we present a chip built-in photonic computer to efficiently solve the subset sum problem. We successfully map the problem into a waveguide network in three dimensions by using femtosecond laser direct writing technique. We show that the photons are able to sufficiently dissipate into the networks and search all the possible paths for solutions in parallel. In the case of successive primes the proposed approach exhibits a dominant superiority in time consumption even compared with supercomputers. Our results confirm the ability of light to realize a complicated computational function that is intractable with conventional computers, and suggest the subset sum problem as a good benchmarking platform for the race between photonic and conventional computers on the way towards photonic supremacy.
Deep neural networks with applications from computer vision and image processing to medical diagnosis are commonly implemented using clock-based processors, where computation speed is limited by the clock frequency and the memory access time. Advances in photonic integrated circuits have enabled research in photonic computation, where, despite excellent features such as fast linear computation, no integrated photonic deep network has been demonstrated to date due to the lack of scalable nonlinear functionality and the loss of photonic devices, making scalability to a large number of layers challenging. Here we report the first integrated end-to-end photonic deep neural network (PDNN) that performs instantaneous image classification through direct processing of optical waves. Images are formed on the input pixels and optical waves are coupled into nanophotonic waveguides and processed as the light propagates through layers of neurons on-chip. Each neuron generates an optical output from input optical signals, where linear computation is performed optically and the nonlinear activation function is realised opto-electronically. The output of a laser coupled into the chip is uniformly distributed among all neurons within the network providing the same per-neuron supply light. Thus, all neurons have the same optical output range enabling scalability to deep networks with large number of layers. The PDNN chip is used for 2- and 4-class classification of handwritten letters achieving accuracies of higher than 93.7% and 90.3%, respectively, with a computation time less than one clock cycle of state-of-the-art digital computation platforms. Direct clock-less processing of optical data eliminates photo-detection, A/D conversion, and the requirement for a large memory module, enabling significantly faster and more energy-efficient neural networks for the next generations of deep learning systems.
The mining in physics and biology for accelerating the hardcore algorithm to solve non-deterministic polynomial (NP) hard problems has inspired a great amount of special-purpose ma-chine models. Ising machine has become an efficient solver for various combinatorial optimizationproblems. As a computing accelerator, large-scale photonic spatial Ising machine have great advan-tages and potentials due to excellent scalability and compact system. However, current fundamentallimitation of photonic spatial Ising machine is the configuration flexibility of problem implementationin the accelerator model. Arbitrary spin interactions is highly desired for solving various NP hardproblems. Moreover, the absence of external magnetic field in the proposed photonic Ising machinewill further narrow the freedom to map the optimization applications. In this paper, we propose anovel quadrature photonic spatial Ising machine to break through the limitation of photonic Isingaccelerator by synchronous phase manipulation in two and three sections. Max-cut problem solutionwith graph order of 100 and density from 0.5 to 1 is experimentally demonstrated after almost 100iterations. We derive and verify using simulation the solution for Max-cut problem with more than1600 nodes and the system tolerance for light misalignment. Moreover, vertex cover problem, modeled as an Ising model with external magnetic field, has been successfully implemented to achievethe optimal solution. Our work suggests flexible problem solution by large-scale photonic spatialIsing machine.
We review some of the basic principles, fundamentals, technologies, architectures and recent advances leading to thefor the implementation of Field Programmable Photonic Field Arrays (FPPGAs).