Do you want to publish a course? Click here

Single-chip photonic deep neural network for instantaneous image classification

156   0   0.0 ( 0 )
 Added by Farshid Ashtiani
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep neural networks with applications from computer vision and image processing to medical diagnosis are commonly implemented using clock-based processors, where computation speed is limited by the clock frequency and the memory access time. Advances in photonic integrated circuits have enabled research in photonic computation, where, despite excellent features such as fast linear computation, no integrated photonic deep network has been demonstrated to date due to the lack of scalable nonlinear functionality and the loss of photonic devices, making scalability to a large number of layers challenging. Here we report the first integrated end-to-end photonic deep neural network (PDNN) that performs instantaneous image classification through direct processing of optical waves. Images are formed on the input pixels and optical waves are coupled into nanophotonic waveguides and processed as the light propagates through layers of neurons on-chip. Each neuron generates an optical output from input optical signals, where linear computation is performed optically and the nonlinear activation function is realised opto-electronically. The output of a laser coupled into the chip is uniformly distributed among all neurons within the network providing the same per-neuron supply light. Thus, all neurons have the same optical output range enabling scalability to deep networks with large number of layers. The PDNN chip is used for 2- and 4-class classification of handwritten letters achieving accuracies of higher than 93.7% and 90.3%, respectively, with a computation time less than one clock cycle of state-of-the-art digital computation platforms. Direct clock-less processing of optical data eliminates photo-detection, A/D conversion, and the requirement for a large memory module, enabling significantly faster and more energy-efficient neural networks for the next generations of deep learning systems.



rate research

Read More

Convolution neural network (CNN), as one of the most powerful and popular technologies, has achieved remarkable progress for image and video classification since its invention in 1989. However, with the high definition video-data explosion, convolution layers in the CNN architecture will occupy a great amount of computing time and memory resources due to high computation complexity of matrix multiply accumulate operation. In this paper, a novel integrated photonic CNN is proposed based on double correlation operations through interleaved time-wavelength modulation. Micro-ring based multi-wavelength manipulation and single dispersion medium are utilized to realize convolution operation and replace the conventional optical delay lines. 200 images are tested in MNIST datasets with accuracy of 85.5% in our photonic CNN versus 86.5% in 64-bit computer.We also analyze the computing error of photonic CNN caused by various micro-ring parameters, operation baud rates and the characteristics of micro-ring weighting bank. Furthermore, a tensor processing unit based on 4x4 mesh with 1.2 TOPS (operation per second when 100% utilization) computing capability at 20G baud rate is proposed and analyzed to form a paralleled photonic CNN.
215 - Xinru Wu , Chaoran Huang , Ke Xu 2017
Optical interconnect is a potential solution to attain the large bandwidth on-chip communications needed in high performance computers in a low power and low cost manner. Mode-division multiplexing (MDM) is an emerging technology that scales the capacity of a single wavelength carrier by the number of modes in a multimode waveguide, and is attractive as a cost-effective means for high bandwidth density on-chip communications. Advanced modulation formats with high spectral efficiency in MDM networks can further improve the data rates of the optical link. Here, we demonstrate an intra-chip MDM communications link employing advanced modulation formats with two waveguide modes. We demonstrate a compact single wavelength carrier link that is expected to support 2x100 Gb/s mode multiplexed capacity. The network comprised integrated microring modulators at the transmitter, mode multiplexers, multimode waveguide interconnect, mode demultiplexers and integrated germanium on silicon photodetectors. Each of the mode channels achieves 100 Gb/s line rate with 84 Gb/s net payload data rate at 7% overhead for hard-decision forward error correction (HD-FEC) in the OFDM/16-QAM signal transmission.
109 - Hailong Zhou , Yuhe Zhao , Xu Wang 2019
Photonic signal processing is essential in the optical communication and optical computing. Numerous photonic signal processors have been proposed, but most of them exhibit limited reconfigurability and automaticity. A feature of fully automatic implementation and intelligent response is highly desirable for the multipurpose photonic signal processors. Here, we report and experimentally demonstrate a fully self-learning and reconfigurable photonic signal processor based on an optical neural network chip. The proposed photonic signal processor is capable of performing various functions including multichannel optical switching, optical multiple-input-multiple-output descrambler and tunable optical filter. All the functions are achieved by complete self-learning. Our demonstration suggests great potential for chip-scale fully programmable optical signal processing with artificial intelligence.
Neural networks have enabled applications in artificial intelligence through machine learning, and neuromorphic computing. Software implementations of neural networks on conventional computers that have separate memory and processor (and that operate sequentially) are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimics neurons and synapses in the brain for distributed and parallel processing. Neuromorphic engineering enabled by photonics (optical physics) can offer sub-nanosecond latencies and high bandwidth with low energies to extend the domain of artificial intelligence and neuromorphic computing applications to machine learning acceleration, nonlinear programming, intelligent signal processing, etc. Photonic neural networks have been demonstrated on integrated platforms and free-space optics depending on the class of applications being targeted. Here, we discuss the prospects and demonstrated applications of these photonic neural networks.
Realization of deep learning with coherent optical field has attracted remarkably attentions presently, which benefits on the fact that optical matrix manipulation can be executed at speed of light with inherent parallel computation as well as low latency. Photonic neural network has a significant potential for prediction-oriented tasks. Yet, real-value Backpropagation behaves somewhat intractably for coherent photonic intelligent training. We develop a compatible learning protocol in complex space, of which nonlinear activation could be selected efficiently depending on the unveiled compatible condition. Compatibility indicates that matrix representation in complex space covers its real counterpart, which could enable a single channel mingled training in real and complex space as a unified model. The phase logical XOR gate with Mach-Zehnder interferometers and diffractive neural network with optical modulation mechanism, implementing intelligent weight learned from compatible learning, are presented to prove the availability. Compatible learning opens an envisaged window for deep photonic neural network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا