Do you want to publish a course? Click here

Neural Spectral Marked Point Processes

160   0   0.0 ( 0 )
 Added by Shixiang Zhu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Self- and mutually-exciting point processes are popular models in machine learning and statistics for dependent discrete event data. To date, most existing models assume stationary kernels (including the classical Hawkes processes) and simple parametric models. Modern applications with complex event data require more general point process models that can incorporate contextual information of the events, called marks, besides the temporal and location information. Moreover, such applications often require non-stationary models to capture more complex spatio-temporal dependence. To tackle these challenges, a key question is to devise a versatile influence kernel in the point process model. In this paper, we introduce a novel and general neural network-based non-stationary influence kernel with high expressiveness for handling complex discrete events data while providing theoretical performance guarantees. We demonstrate the superior performance of our proposed method compared with the state-of-the-art on synthetic and real data.



rate research

Read More

Individual mobility prediction is an essential task for transportation demand management and traffic system operation. There exist a large body of works on modeling location sequence and predicting the next location of users; however, little attention is paid to the prediction of the next trip, which is governed by the strong spatiotemporal dependencies between diverse attributes, including trip start time $t$, origin $o$, and destination $d$. To fill this gap, in this paper we propose a novel point process-based model -- Attentive Marked temporal point processes (AMTPP) -- to model human mobility and predict the whole trip $(t,o,d)$ in a joint manner. To encode the influence of history trips, AMTPP employs the self-attention mechanism with a carefully designed positional embedding to capture the daily/weekly periodicity and regularity in individual travel behavior. Given the unique peaked nature of inter-event time in human behavior, we use an asymmetric log-Laplace mixture distribution to precisely model the distribution of trip start time $t$. Furthermore, an origin-destination (OD) matrix learning block is developed to model the relationship between every origin and destination pair. Experimental results on two large metro trip datasets demonstrate the superior performance of AMTPP.
A neural network (NN) is a parameterised function that can be tuned via gradient descent to approximate a labelled collection of data with high precision. A Gaussian process (GP), on the other hand, is a probabilistic model that defines a distribution over possible functions, and is updated in light of data via the rules of probabilistic inference. GPs are probabilistic, data-efficient and flexible, however they are also computationally intensive and thus limited in their applicability. We introduce a class of neural latent variable models which we call Neural Processes (NPs), combining the best of both worlds. Like GPs, NPs define distributions over functions, are capable of rapid adaptation to new observations, and can estimate the uncertainty in their predictions. Like NNs, NPs are computationally efficient during training and evaluation but also learn to adapt their priors to data. We demonstrate the performance of NPs on a range of learning tasks, including regression and optimisation, and compare and contrast with related models in the literature.
Neural Processes (NPs) (Garnelo et al 2018a;b) approach regression by learning to map a context set of observed input-output pairs to a distribution over regression functions. Each function models the distribution of the output given an input, conditioned on the context. NPs have the benefit of fitting observed data efficiently with linear complexity in the number of context input-output pairs, and can learn a wide family of conditional distributions; they learn predictive distributions conditioned on context sets of arbitrary size. Nonetheless, we show that NPs suffer a fundamental drawback of underfitting, giving inaccurate predictions at the inputs of the observed data they condition on. We address this issue by incorporating attention into NPs, allowing each input location to attend to the relevant context points for the prediction. We show that this greatly improves the accuracy of predictions, results in noticeably faster training, and expands the range of functions that can be modelled.
Unlike in the traditional statistical modeling for which a user typically hand-specify a prior, Neural Processes (NPs) implicitly define a broad class of stochastic processes with neural networks. Given a data stream, NP learns a stochastic process that best describes the data. While this data-driven way of learning stochastic processes has proven to handle various types of data, NPs still rely on an assumption that uncertainty in stochastic processes is modeled by a single latent variable, which potentially limits the flexibility. To this end, we propose the Boostrapping Neural Process (BNP), a novel extension of the NP family using the bootstrap. The bootstrap is a classical data-driven technique for estimating uncertainty, which allows BNP to learn the stochasticity in NPs without assuming a particular form. We demonstrate the efficacy of BNP on various types of data and its robustness in the presence of model-data mismatch.
191 - Alonso-Ruiz , Spodarev 2015
In this paper, a kernel estimator of the differential entropy of the mark distribution of a homogeneous Poisson marked point process is proposed. The marks have an absolutely continuous distribution on a compact Riemannian manifold without boundary. $L^2$ and almost surely consistency of this estimator as well as its asymptotic normality are investigated.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا