Do you want to publish a course? Click here

Embedding Heterogeneous Networks into Hyperbolic Space Without Meta-path

180   0   0.0 ( 0 )
 Added by Soroush Vosoughi Dr
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Networks found in the real-world are numerous and varied. A common type of network is the heterogeneous network, where the nodes (and edges) can be of different types. Accordingly, there have been efforts at learning representations of these heterogeneous networks in low-dimensional space. However, most of the existing heterogeneous network embedding methods suffer from the following two drawbacks: (1) The target space is usually Euclidean. Conversely, many recent works have shown that complex networks may have hyperbolic latent anatomy, which is non-Euclidean. (2) These methods usually rely on meta-paths, which require domain-specific prior knowledge for meta-path selection. Additionally, different down-streaming tasks on the same network might require different meta-paths in order to generate task-specific embeddings. In this paper, we propose a novel self-guided random walk method that does not require meta-path for embedding heterogeneous networks into hyperbolic space. We conduct thorough experiments for the tasks of network reconstruction and link prediction on two public datasets, showing that our model outperforms a variety of well-known baselines across all tasks.



rate research

Read More

Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph.Extensive experiments on two real datasets demonstrate thatMEGA and MEGA++ are more effective than state-of-the-art approaches.
Real-world networks and knowledge graphs are usually heterogeneous networks. Representation learning on heterogeneous networks is not only a popular but a pragmatic research field. The main challenge comes from the heterogeneity -- the diverse types of nodes and edges. Besides, for a given node in a HIN, the significance of a neighborhood node depends not only on the structural distance but semantics. How to effectively capture both structural and semantic relations is another challenge. The current state-of-the-art methods are based on the algorithm of meta-path and therefore have a serious disadvantage -- the performance depends on the arbitrary choosing of meta-path(s). However, the selection of meta-path(s) is experience-based and time-consuming. In this work, we propose a novel meta-path-free representation learning on heterogeneous networks, namely Heterogeneous graph Convolutional Networks (HCN). The proposed method fuses the heterogeneity and develops a $k$-strata algorithm ($k$ is an integer) to capture the $k$-hop structural and semantic information in heterogeneous networks. To the best of our knowledge, this is the first attempt to break out of the confinement of meta-paths for representation learning on heterogeneous networks. We carry out extensive experiments on three real-world heterogeneous networks. The experimental results demonstrate that the proposed method significantly outperforms the current state-of-the-art methods in a variety of analytic tasks.
132 - Jingbo Shang , Meng Qu , Jialu Liu 2016
Most real-world data can be modeled as heterogeneous information networks (HINs) consisting of vertices of multiple types and their relationships. Search for similar vertices of the same type in large HINs, such as bibliographic networks and business-review networks, is a fundamental problem with broad applications. Although similarity search in HINs has been studied previously, most existing approaches neither explore rich semantic information embedded in the network structures nor take users preference as a guidance. In this paper, we re-examine similarity search in HINs and propose a novel embedding-based framework. It models vertices as low-dimensional vectors to explore network structure-embedded similarity. To accommodate user preferences at defining similarity semantics, our proposed framework, ESim, accepts user-defined meta-paths as guidance to learn vertex vectors in a user-preferred embedding space. Moreover, an efficient and parallel sampling-based optimization algorithm has been developed to learn embeddings in large-scale HINs. Extensive experiments on real-world large-scale HINs demonstrate a significant improvement on the effectiveness of ESim over several state-of-the-art algorithms as well as its scalability.
Heterogeneous Information Network (HIN) has attracted much attention due to its wide applicability in a variety of data mining tasks, especially for tasks with multi-typed objects. A potentially large number of meta-paths can be extracted from the heterogeneous networks, providing abundant semantic knowledge. Though a variety of meta-paths can be defined, too many meta-paths are redundant. Reduction on the number of meta-paths can enhance the effectiveness since some redundant meta-paths provide interferential linkage to the task. Moreover, the reduced meta-paths can reflect the characteristic of the heterogeneous network. Previous endeavors try to reduce the number of meta-paths under the guidance of supervision information. Nevertheless, supervised information is expensive and may not always be available. In this paper, we propose a novel algorithm, SPMR (Semantic Preserving Meta-path Reduction), to reduce a set of pre-defined meta-paths in an unsupervised setting. The proposed method is able to evaluate a set of meta-paths to maximally preserve the semantics of original meta-paths after reduction. Experimental results show that SPMR can select a succinct subset of meta-paths which can achieve comparable or even better performance with fewer meta-paths.
In recent time, applications of network embedding in mining real-world information network have been widely reported in the literature. Majority of the information networks are heterogeneous in nature. Meta-path is one of the popularly used approaches for generating embedding in heterogeneous networks. As meta-path guides the models towards a specific sub-structure, it tends to lose some hetero- geneous characteristics inherently present in the underlying network. In this paper, we systematically study the effects of different meta-paths using different state-of-art network embedding methods (Metapath2vec, Node2vec, and VERSE) over DBLP bibliographic network and evaluate the performance of embeddings using two applications (co-authorship prediction and authors research area classification tasks). From various experimental observations, it is evident that embedding using different meta-paths perform differently over different tasks. It shows that meta- paths are task-dependent and can not be generalized for different tasks. We further observe that embedding obtained after considering all the node and relation types in bibliographic network outperforms its meta- path based counterparts.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا