Do you want to publish a course? Click here

On Applying Meta-path for Network Embedding in Mining Heterogeneous DBLP Network

127   0   0.0 ( 0 )
 Added by Akash Anil
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In recent time, applications of network embedding in mining real-world information network have been widely reported in the literature. Majority of the information networks are heterogeneous in nature. Meta-path is one of the popularly used approaches for generating embedding in heterogeneous networks. As meta-path guides the models towards a specific sub-structure, it tends to lose some hetero- geneous characteristics inherently present in the underlying network. In this paper, we systematically study the effects of different meta-paths using different state-of-art network embedding methods (Metapath2vec, Node2vec, and VERSE) over DBLP bibliographic network and evaluate the performance of embeddings using two applications (co-authorship prediction and authors research area classification tasks). From various experimental observations, it is evident that embedding using different meta-paths perform differently over different tasks. It shows that meta- paths are task-dependent and can not be generalized for different tasks. We further observe that embedding obtained after considering all the node and relation types in bibliographic network outperforms its meta- path based counterparts.



rate research

Read More

Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph.Extensive experiments on two real datasets demonstrate thatMEGA and MEGA++ are more effective than state-of-the-art approaches.
Networks found in the real-world are numerous and varied. A common type of network is the heterogeneous network, where the nodes (and edges) can be of different types. Accordingly, there have been efforts at learning representations of these heterogeneous networks in low-dimensional space. However, most of the existing heterogeneous network embedding methods suffer from the following two drawbacks: (1) The target space is usually Euclidean. Conversely, many recent works have shown that complex networks may have hyperbolic latent anatomy, which is non-Euclidean. (2) These methods usually rely on meta-paths, which require domain-specific prior knowledge for meta-path selection. Additionally, different down-streaming tasks on the same network might require different meta-paths in order to generate task-specific embeddings. In this paper, we propose a novel self-guided random walk method that does not require meta-path for embedding heterogeneous networks into hyperbolic space. We conduct thorough experiments for the tasks of network reconstruction and link prediction on two public datasets, showing that our model outperforms a variety of well-known baselines across all tasks.
132 - Jingbo Shang , Meng Qu , Jialu Liu 2016
Most real-world data can be modeled as heterogeneous information networks (HINs) consisting of vertices of multiple types and their relationships. Search for similar vertices of the same type in large HINs, such as bibliographic networks and business-review networks, is a fundamental problem with broad applications. Although similarity search in HINs has been studied previously, most existing approaches neither explore rich semantic information embedded in the network structures nor take users preference as a guidance. In this paper, we re-examine similarity search in HINs and propose a novel embedding-based framework. It models vertices as low-dimensional vectors to explore network structure-embedded similarity. To accommodate user preferences at defining similarity semantics, our proposed framework, ESim, accepts user-defined meta-paths as guidance to learn vertex vectors in a user-preferred embedding space. Moreover, an efficient and parallel sampling-based optimization algorithm has been developed to learn embeddings in large-scale HINs. Extensive experiments on real-world large-scale HINs demonstrate a significant improvement on the effectiveness of ESim over several state-of-the-art algorithms as well as its scalability.
Sampling a network is an important prerequisite for unsupervised network embedding. Further, random walk has widely been used for sampling in previous studies. Since random walk based sampling tends to traverse adjacent neighbors, it may not be suitable for heterogeneous network because in heterogeneous networks two adjacent nodes often belong to different types. Therefore, this paper proposes a K-hop random walk based sampling approach which includes a node in the sample list only if it is separated by K hops from the source node. We exploit the samples generated using K-hop random walker for network embedding using skip-gram model (word2vec). Thereafter, the performance of network embedding is evaluated on co-authorship prediction task in heterogeneous DBLP network. We compare the efficacy of network embedding exploiting proposed sampling approach with recently proposed best performing network embedding models namely, Metapath2vec and Node2vec. It is evident that the proposed sampling approach yields better quality of embeddings and out-performs baselines in majority of the cases.
126 - Xiaohe Li , Lijie Wen , Chen Qian 2020
The real-world networks often compose of different types of nodes and edges with rich semantics, widely known as heterogeneous information network (HIN). Heterogeneous network embedding aims to embed nodes into low-dimensional vectors which capture rich intrinsic information of heterogeneous networks. However, existing models either depend on manually designing meta-paths, ignore mutual effects between different semantics, or omit some aspects of information from global networks. To address these limitations, we propose a novel Graph-Aggregated Heterogeneous Network Embedding (GAHNE), which is designed to extract the semantics of HINs as comprehensively as possible to improve the results of downstream tasks based on graph convolutional neural networks. In GAHNE model, we develop several mechanisms that can aggregate semantic representations from different single-type sub-networks as well as fuse the global information into final embeddings. Extensive experiments on three real-world HIN datasets show that our proposed model consistently outperforms the existing state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا