No Arabic abstract
Most real-world data can be modeled as heterogeneous information networks (HINs) consisting of vertices of multiple types and their relationships. Search for similar vertices of the same type in large HINs, such as bibliographic networks and business-review networks, is a fundamental problem with broad applications. Although similarity search in HINs has been studied previously, most existing approaches neither explore rich semantic information embedded in the network structures nor take users preference as a guidance. In this paper, we re-examine similarity search in HINs and propose a novel embedding-based framework. It models vertices as low-dimensional vectors to explore network structure-embedded similarity. To accommodate user preferences at defining similarity semantics, our proposed framework, ESim, accepts user-defined meta-paths as guidance to learn vertex vectors in a user-preferred embedding space. Moreover, an efficient and parallel sampling-based optimization algorithm has been developed to learn embeddings in large-scale HINs. Extensive experiments on real-world large-scale HINs demonstrate a significant improvement on the effectiveness of ESim over several state-of-the-art algorithms as well as its scalability.
Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph.Extensive experiments on two real datasets demonstrate thatMEGA and MEGA++ are more effective than state-of-the-art approaches.
Networks found in the real-world are numerous and varied. A common type of network is the heterogeneous network, where the nodes (and edges) can be of different types. Accordingly, there have been efforts at learning representations of these heterogeneous networks in low-dimensional space. However, most of the existing heterogeneous network embedding methods suffer from the following two drawbacks: (1) The target space is usually Euclidean. Conversely, many recent works have shown that complex networks may have hyperbolic latent anatomy, which is non-Euclidean. (2) These methods usually rely on meta-paths, which require domain-specific prior knowledge for meta-path selection. Additionally, different down-streaming tasks on the same network might require different meta-paths in order to generate task-specific embeddings. In this paper, we propose a novel self-guided random walk method that does not require meta-path for embedding heterogeneous networks into hyperbolic space. We conduct thorough experiments for the tasks of network reconstruction and link prediction on two public datasets, showing that our model outperforms a variety of well-known baselines across all tasks.
Heterogeneous Information Network (HIN) has attracted much attention due to its wide applicability in a variety of data mining tasks, especially for tasks with multi-typed objects. A potentially large number of meta-paths can be extracted from the heterogeneous networks, providing abundant semantic knowledge. Though a variety of meta-paths can be defined, too many meta-paths are redundant. Reduction on the number of meta-paths can enhance the effectiveness since some redundant meta-paths provide interferential linkage to the task. Moreover, the reduced meta-paths can reflect the characteristic of the heterogeneous network. Previous endeavors try to reduce the number of meta-paths under the guidance of supervision information. Nevertheless, supervised information is expensive and may not always be available. In this paper, we propose a novel algorithm, SPMR (Semantic Preserving Meta-path Reduction), to reduce a set of pre-defined meta-paths in an unsupervised setting. The proposed method is able to evaluate a set of meta-paths to maximally preserve the semantics of original meta-paths after reduction. Experimental results show that SPMR can select a succinct subset of meta-paths which can achieve comparable or even better performance with fewer meta-paths.
PathSim is a widely used meta-path-based similarity in heterogeneous information networks. Numerous applications rely on the computation of PathSim, including similarity search and clustering. Computing PathSim scores on large graphs is computationally challenging due to its high time and storage complexity. In this paper, we propose to transform the problem of approximating the ground truth PathSim scores into a learning problem. We design an encoder-decoder based framework, NeuPath, where the algorithmic structure of PathSim is considered. Specifically, the encoder module identifies Top T optimized path instances, which can approximate the ground truth PathSim, and maps each path instance to an embedding vector. The decoder transforms each embedding vector into a scalar respectively, which identifies the similarity score. We perform extensive experiments on two real-world datasets in different domains, ACM and IMDB. Our results demonstrate that NeuPath performs better than state-of-the-art baselines in the PathSim approximation task and similarity search task.
There is recently a surge in approaches that learn low-dimensional embeddings of nodes in networks. As there are many large-scale real-world networks, its inefficient for existing approaches to store amounts of parameters in memory and update them edge after edge. With the knowledge that nodes having similar neighborhood will be close to each other in embedding space, we propose COSINE (COmpresSIve NE) algorithm which reduces the memory footprint and accelerates the training process by parameters sharing among similar nodes. COSINE applies graph partitioning algorithms to networks and builds parameter sharing dependency of nodes based on the result of partitioning. With parameters sharing among similar nodes, COSINE injects prior knowledge about higher structural information into training process which makes network embedding more efficient and effective. COSINE can be applied to any embedding lookup method and learn high-quality embeddings with limited memory and shorter training time. We conduct experiments of multi-label classification and link prediction, where baselines and our model have the same memory usage. Experimental results show that COSINE gives baselines up to 23% increase on classification and up to 25% increase on link prediction. Moreover, time of all representation learning methods using COSINE decreases from 30% to 70%.