Do you want to publish a course? Click here

Deep Learning Through the Lens of Example Difficulty

136   0   0.0 ( 0 )
 Added by Robert Baldock
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Existing work on understanding deep learning often employs measures that compress all data-dependent information into a few numbers. In this work, we adopt a perspective based on the role of individual examples. We introduce a measure of the computational difficulty of making a prediction for a given input: the (effective) prediction depth. Our extensive investigation reveals surprising yet simple relationships between the prediction depth of a given input and the models uncertainty, confidence, accuracy and speed of learning for that data point. We further categorize difficult examples into three interpretable groups, demonstrate how these groups are processed differently inside deep models and showcase how this understanding allows us to improve prediction accuracy. Insights from our study lead to a coherent view of a number of separately reported phenomena in the literature: early layers generalize while later layers memorize; early layers converge faster and networks learn easy data and simple functions first.



rate research

Read More

Inspired by the phenomenon of catastrophic forgetting, we investigate the learning dynamics of neural networks as they train on single classification tasks. Our goal is to understand whether a related phenomenon occurs when data does not undergo a clear distributional shift. We define a `forgetting event to have occurred when an individual training example transitions from being classified correctly to incorrectly over the course of learning. Across several benchmark data sets, we find that: (i) certain examples are forgotten with high frequency, and some not at all; (ii) a data sets (un)forgettable examples generalize across neural architectures; and (iii) based on forgetting dynamics, a significant fraction of examples can be omitted from the training data set while still maintaining state-of-the-art generalization performance.
We propose a new low-cost machine-learning-based methodology which assists designers in reducing the gap between the problem and the solution in the design process. Our work applies reinforcement learning (RL) to find the optimal task-oriented design solution through the construction of the design action for each task. For this task-oriented design, the 3D design process in product design is assigned to an action space in Deep RL, and the desired 3D model is obtained by training each design action according to the task. By showing that this method achieves satisfactory design even when applied to a task pursuing multiple goals, we suggest the direction of how machine learning can contribute to the design process. Also, we have validated with product designers that this methodology can assist the creative part in the process of design.
In real-world applications, it is often expensive and time-consuming to obtain labeled examples. In such cases, knowledge transfer from related domains, where labels are abundant, could greatly reduce the need for extensive labeling efforts. In this scenario, transfer learning comes in hand. In this paper, we propose Deep Variational Transfer (DVT), a variational autoencoder that transfers knowledge across domains using a shared latent Gaussian mixture model. Thanks to the combination of a semi-supervised ELBO and parameters sharing across domains, we are able to simultaneously: (i) align all supervised examples of the same class into the same latent Gaussian Mixture component, independently from their domain; (ii) predict the class of unsupervised examples from different domains and use them to better model the occurring shifts. We perform tests on MNIST and USPS digits datasets, showing DVTs ability to perform transfer learning across heterogeneous datasets. Additionally, we present DVTs top classification performances on the MNIST semi-supervised learning challenge. We further validate DVT on a astronomical datasets. DVT achieves states-of-the-art classification performances, transferring knowledge across real stars surveys datasets, EROS, MACHO and HiTS, . In the worst performance, we double the achieved F1-score for rare classes. These experiments show DVTs ability to tackle all major challenges posed by transfer learning: different covariate distributions, different and highly imbalanced class distributions and different feature spaces.
238 - Zhijie Deng , Yucen Luo , Jun Zhu 2019
Bayesian neural networks (BNNs) augment deep networks with uncertainty quantification by Bayesian treatment of the network weights. However, such models face the challenge of Bayesian inference in a high-dimensional and usually over-parameterized space. This paper investigates a new line of Bayesian deep learning by performing Bayesian inference on network structure. Instead of building structure from scratch inefficiently, we draw inspirations from neural architecture search to represent the network structure. We then develop an efficient stochastic variational inference approach which unifies the learning of both network structure and weights. Empirically, our method exhibits competitive predictive performance while preserving the benefits of Bayesian principles across challenging scenarios. We also provide convincing experimental justification for our modeling choice.
We show that a large class of Estimation of Distribution Algorithms, including, but not limited to, Covariance Matrix Adaption, can be written as a Monte Carlo Expectation-Maximization algorithm, and as exact EM in the limit of infinite samples. Because EM sits on a rigorous statistical foundation and has been thoroughly analyzed, this connection provides a new coherent framework with which to reason about EDAs.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا