No Arabic abstract
We propose a new low-cost machine-learning-based methodology which assists designers in reducing the gap between the problem and the solution in the design process. Our work applies reinforcement learning (RL) to find the optimal task-oriented design solution through the construction of the design action for each task. For this task-oriented design, the 3D design process in product design is assigned to an action space in Deep RL, and the desired 3D model is obtained by training each design action according to the task. By showing that this method achieves satisfactory design even when applied to a task pursuing multiple goals, we suggest the direction of how machine learning can contribute to the design process. Also, we have validated with product designers that this methodology can assist the creative part in the process of design.
The reinforcement learning community has made great strides in designing algorithms capable of exceeding human performance on specific tasks. These algorithms are mostly trained one task at the time, each new task requiring to train a brand new agent instance. This means the learning algorithm is general, but each solution is not; each agent can only solve the one task it was trained on. In this work, we study the problem of learning to master not one but multiple sequential-decision tasks at once. A general issue in multi-task learning is that a balance must be found between the needs of multiple tasks competing for the limited resources of a single learning system. Many learning algorithms can get distracted by certain tasks in the set of tasks to solve. Such tasks appear more salient to the learning process, for instance because of the density or magnitude of the in-task rewards. This causes the algorithm to focus on those salient tasks at the expense of generality. We propose to automatically adapt the contribution of each task to the agents updates, so that all tasks have a similar impact on the learning dynamics. This resulted in state of the art performance on learning to play all games in a set of 57 diverse Atari games. Excitingly, our method learned a single trained policy - with a single set of weights - that exceeds median human performance. To our knowledge, this was the first time a single agent surpassed human-level performance on this multi-task domain. The same approach also demonstrated state of the art performance on a set of 30 tasks in the 3D reinforcement learning platform DeepMind Lab.
Microfluidic devices are utilized to control and direct flow behavior in a wide variety of applications, particularly in medical diagnostics. A particularly popular form of microfluidics -- called inertial microfluidic flow sculpting -- involves placing a sequence of pillars to controllably deform an initial flow field into a desired one. Inertial flow sculpting can be formally defined as an inverse problem, where one identifies a sequence of pillars (chosen, with replacement, from a finite set of pillars, each of which produce a specific transformation) whose composite transformation results in a user-defined desired transformation. Endemic to most such problems in engineering, inverse problems are usually quite computationally intractable, with most traditional approaches based on search and optimization strategies. In this paper, we pose this inverse problem as a Reinforcement Learning (RL) problem. We train a DoubleDQN agent to learn from this environment. The results suggest that learning is possible using a DoubleDQN model with the success frequency reaching 90% in 200,000 episodes and the rewards converging. While most of the results are obtained by fixing a particular target flow shape to simplify the learning problem, we later demonstrate how to transfer the learning of an agent based on one target shape to another, i.e. from one design to another and thus be useful for a generic design of a flow shape.
In mobile crowdsourcing (MCS), the platform selects participants to complete location-aware tasks from the recruiters aiming to achieve multiple goals (e.g., profit maximization, energy efficiency, and fairness). However, different MCS systems have different goals and there are possibly conflicting goals even in one MCS system. Therefore, it is crucial to design a participant selection algorithm that applies to different MCS systems to achieve multiple goals. To deal with this issue, we formulate the participant selection problem as a reinforcement learning problem and propose to solve it with a novel method, which we call auxiliary-task based deep reinforcement learning (ADRL). We use transformers to extract representations from the context of the MCS system and a pointer network to deal with the combinatorial optimization problem. To improve the sample efficiency, we adopt an auxiliary-task training process that trains the network to predict the imminent tasks from the recruiters, which facilitates the embedding learning of the deep learning model. Additionally, we release a simulated environment on a specific MCS task, the ride-sharing task, and conduct extensive performance evaluations in this environment. The experimental results demonstrate that ADRL outperforms and improves sample efficiency over other well-recognized baselines in various settings.
In this paper, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services. In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions, in which the tasks can be processed at the UAV or offloaded to the nearby base station or the remote satellite. Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint. To this end, we first formulate the online scheduling problem as an energy-constrained Markov decision process (MDP). Then, considering the task arrival dynamics, we develop a novel deep risk-sensitive reinforcement learning algorithm. Specifically, the algorithm evaluates the risk, which measures the energy consumption that exceeds the constraint, for each state and searches the optimal parameter weighing the minimization of delay and risk while learning the optimal policy. Extensive simulation results demonstrate that the proposed algorithm can reduce the task processing delay by up to 30% compared to probabilistic configuration methods while satisfying the UAV energy capacity constraint.
Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a stream of incomplete and noisy observations. In this paper, we propose deep variational reinforcement learning (DVRL), which introduces an inductive bias that allows an agent to learn a generative model of the environment and perform inference in that model to effectively aggregate the available information. We develop an n-step approximation to the evidence lower bound (ELBO), allowing the model to be trained jointly with the policy. This ensures that the latent state representation is suitable for the control task. In experiments on Mountain Hike and flickering Atari we show that our method outperforms previous approaches relying on recurrent neural networks to encode the past.