Do you want to publish a course? Click here

Stellar Shocks From Dark Matter

158   0   0.0 ( 0 )
 Added by Kevin Zhou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Macroscopic dark matter is almost unconstrained over a wide asteroid-like mass range, where it could scatter on baryonic matter with geometric cross section. We show that when such an object travels through a star, it produces shock waves which reach the stellar surface, leading to a distinctive transient optical, UV and X-ray emission. This signature can be searched for on a variety of stellar types and locations. In a dense globular cluster, such events occur far more often than flare backgrounds, and an existing UV telescope could probe orders of magnitude in dark matter mass in one week of dedicated observation.



rate research

Read More

We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino observatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels.
We compute the decay spectrum for dark matter (DM) with masses above the scale of electroweak symmetry breaking, all the way to the Planck scale. For an arbitrary hard process involving a decay to the unbroken standard model, we determine the prompt distribution of stable states including photons, neutrinos, positrons, and antiprotons. These spectra are a crucial ingredient in the search for DM via indirect detection at the highest energies as being probed in current and upcoming experiments including IceCube, HAWC, CTA, and LHAASO. Our approach improves considerably on existing methods. For example, we include all relevant electroweak interactions. The importance of these effects grow with DM mass, and by an EeV our spectra can differ by orders of magnitude from existing results.
We perform a systematic study of the phenomenology associated to models where the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet, up to n=7. If one includes only the pure gauge induced annihilation cross-sections it is known that such particles provide good dark matter candidates, leading to the observed dark matter relic abundance for a particular value of their mass around the TeV scale. We show that these values actually become ranges of values -which we determine- if one takes into account the annihilations induced by the various scalar couplings appearing in these models. This leads to predictions for both direct and indirect detection signatures as a function of the dark matter mass within these ranges. Both can be largely enhanced by the quartic coupling contributions. We also explain how, if one adds right-handed neutrinos to the scalar doublet case, the results of this analysis allow to have altogether a viable dark matter candidate, successful generation of neutrino masses, and leptogenesis in a particularly minimal way with all new physics at the TeV scale.
We consider a novel scenario of dark photon-mediated inelastic dark matter to explain the white dwarf cooling excess suggested by its luminosity function, and the excess in electron recoil events at XENON1T. In the Sun, the dark photon $A$ is produced mainly via thermal processes, and the heavier dark matter $chi_2$ is produced by the scattering of halo dark matter $chi_1$ with electrons. The XENON1T signal arises primarily by solar $A$ scattering, and $A$ emission by white dwarfs accommodates the extra cooling while maintaining consistency with other stellar cooling observations. A tritium component in the XENON1T detector is also required. We show for parameters that explain the XENON1T data, but not the white dwarf cooling anomaly, that a second signal peak may be buried in the XENON1T data and revealable at XENONnT. However, the parameters that give the double peak in the spectrum are incompatible with constraints from horizontal branch stars.
A dark QCD sector is a relatively minimal extension of the Standard Model (SM) that admits Dark Matter (DM) candidates but requires no portal to the visible sector beyond gravitational interactions: A nightmare scenario for DM detection. We consider a secluded dark sector containing a single flavor of light, vector-like dark quark gauged under $SU(N)$. In the large-$N$ limit, this single-flavor theory becomes highly predictive, generating two DM candidates whose masses and dynamics are described by few parameters: A light quark-antiquark bound state, the dark analog of the $eta$ meson, and a heavy bound state of $N$ quarks, the dark analog of the $Delta^{++}$ baryon. We show that the latter may freeze-in with an abundance independent of the confinement scale, forming DM-like relics for $N lesssim 10$, while the former may generate DM via cannibalization and freeze-out. We study the interplay of this two-component DM system and determine the characteristic ranges of the confinement scale, dark-visible sector temperature ratio, and $N$ that admit non-excluded DM, once the effects of self-interaction constraints and bounds on effective degrees of freedom at the BBN and CMB epochs are included.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا