Do you want to publish a course? Click here

Neutrino Signals from Dark Matter Decay

196   0   0.0 ( 0 )
 Added by Michael Grefe
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino observatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels.



rate research

Read More

The hypothesis of two different components in the high-energy neutrino flux observed with IceCube has been proposed to solve the tension among different data-sets and to account for an excess of neutrino events at 100 TeV. In addition to a standard astrophysical power-law component, the second component might be explained by a different class of astrophysical sources, or more intriguingly, might originate from decaying or annihilating dark matter. These two scenarios can be distinguished thanks to the different expected angular distributions of neutrino events. Neutrino signals from dark matter are indeed expected to have some correlation with the extended galactic dark matter halo. In this paper, we perform angular power spectrum analyses of simulated neutrino sky maps to investigate the two-component hypothesis with a contribution from dark matter. We provide current constraints and expected sensitivity to dark matter parameters for future neutrino telescopes such as IceCube-Gen2 and KM3NeT. The latter is found to be more sensitive than IceCube-Gen2 to look for a dark matter signal at low energies towards the galactic center. Finally, we show that after 10 years of data-taking, they will firmly probe the current best-fit scenario for decaying dark matter by exploiting the angular information only.
We study scenarios where loop processes give the dominant contributions to dark matter decay or annihilation despite the presence of tree level channels. We illustrate this possibility in a specific model where dark matter is part of a hidden sector that communicates with the Standard Model sector via a heavy neutrino portal. We explain the underpinning rationale for how loop processes mediated by the portal neutrinos can parametrically dominate over tree level decay channels, and demonstrate that this qualitatively changes the indirect detection signals in positrons, neutrinos, and gamma rays.
We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.
Macroscopic dark matter is almost unconstrained over a wide asteroid-like mass range, where it could scatter on baryonic matter with geometric cross section. We show that when such an object travels through a star, it produces shock waves which reach the stellar surface, leading to a distinctive transient optical, UV and X-ray emission. This signature can be searched for on a variety of stellar types and locations. In a dense globular cluster, such events occur far more often than flare backgrounds, and an existing UV telescope could probe orders of magnitude in dark matter mass in one week of dedicated observation.
140 - Michael Grefe 2011
The gravitino is a promising supersymmetric dark matter candidate, even without strict R-parity conservation. In fact, with some small R-parity violation, gravitinos are sufficiently long-lived to constitute the dark matter of the universe, while the resulting cosmological scenario is consistent with primordial nucleosynthesis and the high reheating temperature needed for thermal leptogenesis. Furthermore, in this scenario the gravitino is unstable and might thus be accessible by indirect detection via its decay products. We compute in this thesis the partial decay widths for the gravitino in models with bilinear R-parity breaking. In addition, we determine the neutrino signal from astrophysical gravitino dark matter decays. Finally, we discuss the feasibility of detecting these neutrino signals in present and future neutrino experiments, and conclude that it will be a challenging task. Albeit, if detected, this distinctive signal might bring considerable support to the scenario of decaying gravitino dark matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا