Do you want to publish a course? Click here

Self-supervised GANs with Label Augmentation

110   0   0.0 ( 0 )
 Added by Liang Hou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, transformation-based self-supervised learning has been applied to generative adversarial networks (GANs) to mitigate the catastrophic forgetting problem of discriminator by learning stable representations. However, the separate self-supervised tasks in existing self-supervised GANs cause an inconsistent goal with generative modeling due to the learning of the generator from their generator distribution-agnostic classifiers. To address this issue, we propose a novel self-supervised GANs framework with label augmentation, i.e., augmenting the GAN labels (real or fake) with the self-supervised pseudo-labels. In particular, the discriminator and the self-supervised classifier are unified to learn a single task that predicts the augmented label such that the discriminator/classifier is aware of the generator distribution, while the generator tries to confuse the discriminator/classifier by optimizing the discrepancy between the transformed real and generated distributions. Theoretically, we prove that the generator, at the equilibrium point, converges to replicate the data distribution. Empirically, we demonstrate that the proposed method significantly outperforms competitive baselines on both generative modeling and representation learning across benchmark datasets.



rate research

Read More

Recently deep learning methods, in particular, convolutional neural networks (CNNs), have led to a massive breakthrough in the range of computer vision. Also, the large-scale annotated dataset is the essential key to a successful training procedure. However, it is a huge challenge to get such datasets in the medical domain. Towards this, we present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs). We add semi-supervised attention modules to generate images with convincing details. We treat tumor images and normal images as two domains. The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image. Furthermore, we show that generated medical images can be used for improving the performance of ResNet18 for medical image classification. Our model is applied to three limited datasets of tumor MRI images. We first generate MRI images on limited datasets, then we trained three popular classification models to get the best model for tumor classification. Finally, we train the classification model using real images with classic data augmentation methods and classification models using synthetic images. The classification results between those trained models showed that the proposed SAG-GAN data augmentation method can boost Accuracy and AUC compare with classic data augmentation methods. We believe the proposed data augmentation method can apply to other medical image domains, and improve the accuracy of computer-assisted diagnosis.
We propose self-adaptive training -- a unified training algorithm that dynamically calibrates and enhances training process by model predictions without incurring extra computational cost -- to advance both supervised and self-supervised learning of deep neural networks. We analyze the training dynamics of deep networks on training data that are corrupted by, e.g., random noise and adversarial examples. Our analysis shows that model predictions are able to magnify useful underlying information in data and this phenomenon occurs broadly even in the absence of emph{any} label information, highlighting that model predictions could substantially benefit the training process: self-adaptive training improves the generalization of deep networks under noise and enhances the self-supervised representation learning. The analysis also sheds light on understanding deep learning, e.g., a potential explanation of the recently-discovered double-descent phenomenon in empirical risk minimization and the collapsing issue of the state-of-the-art self-supervised learning algorithms. Experiments on the CIFAR, STL and ImageNet datasets verify the effectiveness of our approach in three applications: classification with label noise, selective classification and linear evaluation. To facilitate future research, the code has been made public available at https://github.com/LayneH/self-adaptive-training.
Recent work has demonstrated that neural networks are vulnerable to adversarial examples. To escape from the predicament, many works try to harden the model in various ways, in which adversarial training is an effective way which learns robust feature representation so as to resist adversarial attacks. Meanwhile, the self-supervised learning aims to learn robust and semantic embedding from data itself. With these views, we introduce self-supervised learning to against adversarial examples in this paper. Specifically, the self-supervised representation coupled with k-Nearest Neighbour is proposed for classification. To further strengthen the defense ability, self-supervised adversarial training is proposed, which maximizes the mutual information between the representations of original examples and the corresponding adversarial examples. Experimental results show that the self-supervised representation outperforms its supervised version in respect of robustness and self-supervised adversarial training can further improve the defense ability efficiently.
Machine learning analysis of longitudinal neuroimaging data is typically based on supervised learning, which requires a large number of ground-truth labels to be informative. As ground-truth labels are often missing or expensive to obtain in neuroscience, we avoid them in our analysis by combing factor disentanglement with self-supervised learning to identify changes and consistencies across the multiple MRIs acquired of each individual over time. Specifically, we propose a new definition of disentanglement by formulating a multivariate mapping between factors (e.g., brain age) associated with an MRI and a latent image representation. Then, factors that evolve across acquisitions of longitudinal sequences are disentangled from that mapping by self-supervised learning in such a way that changes in a single factor induce change along one direction in the representation space. We implement this model, named Longitudinal Self-Supervised Learning (LSSL), via a standard autoencoding structure with a cosine loss to disentangle brain age from the image representation. We apply LSSL to two longitudinal neuroimaging studies to highlight its strength in extracting the brain-age information from MRI and revealing informative characteristics associated with neurodegenerative and neuropsychological disorders. Moreover, the representations learned by LSSL facilitate supervised classification by recording faster convergence and higher (or similar) prediction accuracy compared to several other representation learning techniques.
60 - Ayaan Haque 2020
Semi-supervised learning has been gaining attention as it allows for performing image analysis tasks such as classification with limited labeled data. Some popular algorithms using Generative Adversarial Networks (GANs) for semi-supervised classification share a single architecture for classification and discrimination. However, this may require a model to converge to a separate data distribution for each task, which may reduce overall performance. While progress in semi-supervised learning has been made, less addressed are small-scale, fully-supervised tasks where even unlabeled data is unavailable and unattainable. We therefore, propose a novel GAN model namely External Classifier GAN (EC-GAN), that utilizes GANs and semi-supervised algorithms to improve classification in fully-supervised regimes. Our method leverages a GAN to generate artificial data used to supplement supervised classification. More specifically, we attach an external classifier, hence the name EC-GAN, to the GANs generator, as opposed to sharing an architecture with the discriminator. Our experiments demonstrate that EC-GANs performance is comparable to the shared architecture method, far superior to the standard data augmentation and regularization-based approach, and effective on a small, realistic dataset.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا