Do you want to publish a course? Click here

Scaling optical computing in synthetic frequency dimension using integrated cavity acousto-optics

87   0   0.0 ( 0 )
 Added by Han Zhao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical computing with integrated photonics brings a pivotal paradigm shift to data-intensive computing technologies. However, the scaling of on-chip photonic architectures using spatially distributed schemes faces the challenge imposed by the fundamental limit of integration density. Synthetic dimensions of light offer the opportunity to extend the length of operand vectors within a single photonic component. Here, we show that large-scale, complex-valued matrix-vector multiplications on synthetic frequency lattices can be performed using an ultra-efficient, silicon-based nanophotonic cavity acousto-optic modulator. By harnessing the resonantly enhanced strong electro-optomechanical coupling, we achieve, in a single such modulator, the full-range phase-coherent frequency



rate research

Read More

High-density communication through optical fiber is made possible by Wavelength Division Multiplexing, which is the simultaneous transmission of many discrete signals at different optical frequencies. Vast quantities of data may be transmitted without interference using this scheme but flexible routing of these signals requires an electronic middle step, carrying a cost in latency. We present a technique for frequency conversion across the entire WDM spectrum with a single device, which removes this latency cost. Using an optical waveguide in lithium niobate and two infrared pump beams, we show how to maximize conversion efficiency between arbitrary frequencies by analyzing the role of dispersion in cascaded nonlinear processes. The technique is presented generally and may be applied to any suitable nonlinear material or platform, and to classical or quantum optical signals.
447 - Nathan Dostart 2020
Acousto-optic devices utilize the overlap of acoustic and optical fields to facilitate photon-phonon interactions. For tightly confined optical and acoustic fields, such as the sub-wavelength scales achievable in integrated devices, this interaction is enhanced. Broadband operation which fully benefits from this enhancement requires light and sound to co-propagate in the same cross-section, a geometry currently lacking in the field. We introduce the `acoustic-optical multiplexer, which enables this co-linear geometry, and demonstrate through simulations a proof-of-concept design. Using suspended silicon and silica beams, the multiplexer combines two optical modes and an acoustic mode into a single, co-guided output port with low insertion loss and reflection for both optics and acoustics. The first design in its class, the multiplexer enables integrated acousto-optic devices to achieve efficient photon-phonon interactions.
Whispering gallery modes (WGMs), circulating modes near the surface of a spheroidal material, have been known to exhibit high quality factors for both acoustic and electromagnetic waves. Here, we report an electro-optomechanical system, where the overlapping WGMs of acoustic and optical waves along the equator of a dielectric sphere strongly couple to each other. The triple-resonance phase-matching condition provides a large enhancement of the Brillouin scattering only in a single sideband, and conversion from the input radio-frequency signal exciting the acoustic mode to the output optical signal is observed.
Optical frequency combs consist of equally spaced discrete optical frequency components and are essential tools for optical communications and for precision metrology, timing and spectroscopy. To date, wide-spanning combs are most often generated by mode-locked lasers or dispersion-engineered resonators with third-order Kerr nonlinearity. An alternative comb generation method uses electro-optic (EO) phase modulation in a resonator with strong second-order nonlinearity, resulting in combs with excellent stability and controllability. Previous EO combs, however, have been limited to narrow widths by a weak EO interaction strength and a lack of dispersion engineering in free-space systems. In this work, we overcome these limitations by realizing an integrated EO comb generator in a thin-film lithium niobate photonic platform that features a large electro-optic response, ultra-low optical loss and highly co-localized microwave and optical felds, while enabling dispersion engineering. Our measured EO frequency comb spans more than the entire telecommunications L-band (over 900 comb lines spaced at ~ 10 GHz), and we show that future dispersion engineering can enable octave-spanning combs. Furthermore, we demonstrate the high tolerance of our comb generator to modulation frequency detuning, with frequency spacing finely controllable over seven orders of magnitude (10 Hz to 100 MHz), and utilize this feature to generate dual frequency combs in a single resonator. Our results show that integrated EO comb generators, capable of generating wide and stable comb spectra, are a powerful complement to integrated Kerr combs, enabling applications ranging from spectroscopy to optical communications.
We demonstrate acousto-optic phase modulators in X-cut lithium niobate films on sapphire, detailing the dependence of the piezoelectric and optomechanical coupling coefficients on the crystal orientation. This new platform supports highly confined, strongly piezoelectric mechanical waves without suspensions, making it a promising candidate for broadband and efficient integrated acousto-optic devices, circuits, and systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا