Do you want to publish a course? Click here

Radio-Frequency-to-Optical Conversion using Acoustic and Optical Whispering Gallery Modes

113   0   0.0 ( 0 )
 Added by Rekishu Yamazaki
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Whispering gallery modes (WGMs), circulating modes near the surface of a spheroidal material, have been known to exhibit high quality factors for both acoustic and electromagnetic waves. Here, we report an electro-optomechanical system, where the overlapping WGMs of acoustic and optical waves along the equator of a dielectric sphere strongly couple to each other. The triple-resonance phase-matching condition provides a large enhancement of the Brillouin scattering only in a single sideband, and conversion from the input radio-frequency signal exciting the acoustic mode to the output optical signal is observed.



rate research

Read More

Free-electron beams serve as uniquely versatile probes of microscopic structure and composition, and have repeatedly revolutionized atomic-scale imaging, from solid-state physics to structural biology. Over the past decade, the manipulation and interaction of electrons with optical fields has seen significant progress, enabling novel imaging methods, schemes of near-field electron acceleration, and culminating in 4D microscopy techniques with both high temporal and spatial resolution. However, weak coupling strengths of electron beams to optical excitations are a standing issue for existing and emerging applications of optical free-electron control. Here, we demonstrate phase matched near-field coupling of a free-electron beam to optical whispering gallery modes of dielectric microresonators. The cavity-enhanced interaction with these optically excited modes imprints a strong phase modulation on co-propagating electrons, which leads to electron-energy sidebands up to hundreds of photon orders and a spectral broadening of 700 eV. Mapping the near-field interaction with ultrashort electron pulses in space and time, we trace the temporal ring-down of the microresonator following a femtosecond excitation and observe the cavitys resonant spectral response. Resonantly enhancing the coupling of electrons and light via optical cavities, with efficient injection and extraction, can open up novel applications such as continuous-wave acceleration, attosecond structuring, and real-time all-optical electron detection.
We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.
Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum processors and memories via low-loss optical telecommunication networks. Efficient conversion can be achieved with electro-optical modulators operating at the single microwave photon level. In the standard electro-optic modulation scheme this is impossible because both, up- and downconverted, sidebands are necessarily present. Here we demonstrate true single sideband up- or downconversion in a triply resonant whispering gallery mode resonator by explicitly addressing modes with asymmetric free spectral range. Compared to previous experiments, we show a three orders of magnitude improvement of the electro-optical conversion efficiency reaching 0.1% photon number conversion for a 10GHz microwave tone at 0.42mW of optical pump power. The presented scheme is fully compatible with existing superconducting 3D circuit quantum electrodynamics technology and can be used for non-classical state conversion and communication. Our conversion bandwidth is larger than 1MHz and not fundamentally limited.
We demonstrate a thermal infrared (IR) detector based on an ultra-high-quality-factor (Q) whispering-gallery-mode (WGM) microtoroidal silica resonator, and investigate its performance to detect IR radiation at 10 micron wavelength. The bandwidth and the sensitivity of the detector are dependent on the power of a probe laser and the detuning between the probe laser and the resonance frequency of the resonator. The microtoroid IR sensor achieved a noise-equivalent-power (NEP) of 7.46 nW, corresponding to IR intensity of 0.095 mW/cm^2
157 - J. T. Rubin , L. Deych 2011
In this paper we discuss the force exerted by the field of an optical cavity on a polarizable dipole. We show that the modification of the cavity modes due to interaction with the dipole significantly alters the properties of the force. In particular, all components of the force are found to be non-conservative, and cannot, therefore, be derived from a potential energy. We also suggest a simple generalization of the standard formulas for the optical force on the dipole, which reproduces the results of calculations based on the Maxwell stress tensor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا