No Arabic abstract
In this paper, we propose a single multi-task learning framework to perform End-to-End (E2E) speech recognition (ASR) and accent recognition (AR) simultaneously. The proposed framework is not only more compact but can also yield comparable or even better results than standalone systems. Specifically, we found that the overall performance is predominantly determined by the ASR task, and the E2E-based ASR pretraining is essential to achieve improved performance, particularly for the AR task. Additionally, we conduct several analyses of the proposed method. First, though the objective loss for the AR task is much smaller compared with its counterpart of ASR task, a smaller weighting factor with the AR task in the joint objective function is necessary to yield better results for each task. Second, we found that sharing only a few layers of the encoder yields better AR results than sharing the overall encoder. Experimentally, the proposed method produces WER results close to the best standalone E2E ASR ones, while it achieves 7.7% and 4.2% relative improvement over standalone and single-task-based joint recognition methods on test set for accent recognition respectively.
Recently, there has been an increasing interest in end-to-end speech recognition that directly transcribes speech to text without any predefined alignments. One approach is the attention-based encoder-decoder framework that learns a mapping between variable-length input and output sequences in one step using a purely data-driven method. The attention model has often been shown to improve the performance over another end-to-end approach, the Connectionist Temporal Classification (CTC), mainly because it explicitly uses the history of the target character without any conditional independence assumptions. However, we observed that the performance of the attention has shown poor results in noisy condition and is hard to learn in the initial training stage with long input sequences. This is because the attention model is too flexible to predict proper alignments in such cases due to the lack of left-to-right constraints as used in CTC. This paper presents a novel method for end-to-end speech recognition to improve robustness and achieve fast convergence by using a joint CTC-attention model within the multi-task learning framework, thereby mitigating the alignment issue. An experiment on the WSJ and CHiME-4 tasks demonstrates its advantages over both the CTC and attention-based encoder-decoder baselines, showing 5.4-14.6% relative improvements in Character Error Rate (CER).
Despite the growing interest in unsupervised learning, extracting meaningful knowledge from unlabelled audio remains an open challenge. To take a step in this direction, we recently proposed a problem-agnostic speech encoder (PASE), that combines a convolutional encoder followed by multiple neural networks, called workers, tasked to solve self-supervised problems (i.e., ones that do not require manual annotations as ground truth). PASE was shown to capture relevant speech information, including speaker voice-print and phonemes. This paper proposes PASE+, an improved version of PASE for robust speech recognition in noisy and reverberant environments. To this end, we employ an online speech distortion module, that contaminates the input signals with a variety of random disturbances. We then propose a revised encoder that better learns short- and long-term speech dynamics with an efficient combination of recurrent and convolutional networks. Finally, we refine the set of workers used in self-supervision to encourage better cooperation. Results on TIMIT, DIRHA and CHiME-5 show that PASE+ significantly outperforms both the previous version of PASE as well as common acoustic features. Interestingly, PASE+ learns transferable representations suitable for highly mismatched acoustic conditions.
The performance of automatic speech recognition systems degrades with increasing mismatch between the training and testing scenarios. Differences in speaker accents are a significant source of such mismatch. The traditional approach to deal with multiple accents involves pooling data from several accents during training and building a single model in multi-task fashion, where tasks correspond to individual accents. In this paper, we explore an alternate model where we jointly learn an accent classifier and a multi-task acoustic model. Experiments on the American English Wall Street Journal and British English Cambridge corpora demonstrate that our joint model outperforms the strong multi-task acoustic model baseline. We obtain a 5.94% relative improvement in word error rate on British English, and 9.47% relative improvement on American English. This illustrates that jointly modeling with accent information improves acoustic model performance.
To realize robust end-to-end Automatic Speech Recognition(E2E ASR) under radio communication condition, we propose a multitask-based method to joint train a Speech Enhancement (SE) module as the front-end and an E2E ASR model as the back-end in this paper. One of the advantage of the proposed method is that the entire system can be trained from scratch. Different from prior works, either component here doesnt need to perform pre-training and fine-tuning processes separately. Through analysis, we found that the success of the proposed method lies in the following aspects. Firstly, multitask learning is essential, that is the SE network is not only learning to produce more Intelligent speech, it is also aimed to generate speech that is beneficial to recognition. Secondly, we also found speech phase preserved from noisy speech is critical for improving ASR performance. Thirdly, we propose a dual channel data augmentation training method to obtain further improvement.Specifically, we combine the clean and enhanced speech to train the whole system. We evaluate the proposed method on the RATS English data set, achieving a relative WER reduction of 4.6% with the joint training method, and up to a relative WER reduction of 11.2% with the proposed data augmentation method.
Recently, self-supervised pre-training has gained success in automatic speech recognition (ASR). However, considering the difference between speech accents in real scenarios, how to identify accents and use accent features to improve ASR is still challenging. In this paper, we employ the self-supervised pre-training method for both accent identification and accented speech recognition tasks. For the former task, a standard deviation constraint loss (SDC-loss) based end-to-end (E2E) architecture is proposed to identify accents under the same language. As for accented speech recognition task, we design an accent-dependent ASR system, which can utilize additional accent input features. Furthermore, we propose a frame-level accent feature, which is extracted based on the proposed accent identification model and can be dynamically adjusted. We pre-train our models using 960 hours unlabeled LibriSpeech dataset and fine-tune them on AESRC2020 speech dataset. The experimental results show that our proposed accent-dependent ASR system is significantly ahead of the AESRC2020 baseline and achieves $6.5%$ relative word error rate (WER) reduction compared with our accent-independent ASR system.