Do you want to publish a course? Click here

Joint Modeling of Accents and Acoustics for Multi-Accent Speech Recognition

94   0   0.0 ( 0 )
 Added by Xuesong Yang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The performance of automatic speech recognition systems degrades with increasing mismatch between the training and testing scenarios. Differences in speaker accents are a significant source of such mismatch. The traditional approach to deal with multiple accents involves pooling data from several accents during training and building a single model in multi-task fashion, where tasks correspond to individual accents. In this paper, we explore an alternate model where we jointly learn an accent classifier and a multi-task acoustic model. Experiments on the American English Wall Street Journal and British English Cambridge corpora demonstrate that our joint model outperforms the strong multi-task acoustic model baseline. We obtain a 5.94% relative improvement in word error rate on British English, and 9.47% relative improvement on American English. This illustrates that jointly modeling with accent information improves acoustic model performance.



rate research

Read More

Speech applications dealing with conversations require not only recognizing the spoken words, but also determining who spoke when. The task of assigning words to speakers is typically addressed by merging the outputs of two separate systems, namely, an automatic speech recognition (ASR) system and a speaker diarization (SD) system. The two systems are trained independently with different objective functions. Often the SD systems operate directly on the acoustics and are not constrained to respect word boundaries and this deficiency is overcome in an ad hoc manner. Motivated by recent advances in sequence to sequence learning, we propose a novel approach to tackle the two tasks by a joint ASR and SD system using a recurrent neural network transducer. Our approach utilizes both linguistic and acoustic cues to infer speaker roles, as opposed to typical SD systems, which only use acoustic cues. We evaluated the performance of our approach on a large corpus of medical conversations between physicians and patients. Compared to a competitive conventional baseline, our approach improves word-level diarization error rate from 15.8% to 2.2%.
The attention mechanism of the Listen, Attend and Spell (LAS) model requires the whole input sequence to calculate the attention context and thus is not suitable for online speech recognition. To deal with this problem, we propose multi-head monotonic chunk-wise attention (MTH-MoChA), an improved version of MoChA. MTH-MoChA splits the input sequence into small chunks and computes multi-head attentions over the chunks. We also explore useful training strategies such as LSTM pooling, minimum world error rate training and SpecAugment to further improve the performance of MTH-MoChA. Experiments on AISHELL-1 data show that the proposed model, along with the training strategies, improve the character error rate (CER) of MoChA from 8.96% to 7.68% on test set. On another 18000 hours in-car speech data set, MTH-MoChA obtains 7.28% CER, which is significantly better than a state-of-the-art hybrid system.
Techniques for multi-lingual and cross-lingual speech recognition can help in low resource scenarios, to bootstrap systems and enable analysis of new languages and domains. End-to-end approaches, in particular sequence-based techniques, are attractive because of their simplicity and elegance. While it is possible to integrate traditional multi-lingual bottleneck feature extractors as front-ends, we show that end-to-end multi-lingual training of sequence models is effective on context independent models trained using Connectionist Temporal Classification (CTC) loss. We show that our model improves performance on Babel languages by over 6% absolute in terms of word/phoneme error rate when compared to mono-lingual systems built in the same setting for these languages. We also show that the trained model can be adapted cross-lingually to an unseen language using just 25% of the target data. We show that training on multiple languages is important for very low resource cross-lingual target scenarios, but not for multi-lingual testing scenarios. Here, it appears beneficial to include large well prepared datasets.
Recent success of the Tacotron speech synthesis architecture and its variants in producing natural sounding multi-speaker synthesized speech has raised the exciting possibility of replacing expensive, manually transcribed, domain-specific, human speech that is used to train speech recognizers. The multi-speaker speech synthesis architecture can learn latent embedding spaces of prosody, speaker and style variations derived from input acoustic representations thereby allowing for manipulation of the synthesized speech. In this paper, we evaluate the feasibility of enhancing speech recognition performance using speech synthesis using two corpora from different domains. We explore algorithms to provide the necessary acoustic and lexical diversity needed for robust speech recognition. Finally, we demonstrate the feasibility of this approach as a data augmentation strategy for domain-transfer. We find that improvements to speech recognition performance is achievable by augmenting training data with synthesized material. However, there remains a substantial gap in performance between recognizers trained on human speech those trained on synthesized speech.
Automatic Speech Recognition (ASR) using multiple microphone arrays has achieved great success in the far-field robustness. Taking advantage of all the information that each array shares and contributes is crucial in this task. Motivated by the advances of joint Connectionist Temporal Classification (CTC)/attention mechanism in the End-to-End (E2E) ASR, a stream attention-based multi-array framework is proposed in this work. Microphone arrays, acting as information streams, are activated by separate encoders and decoded under the instruction of both CTC and attention networks. In terms of attention, a hierarchical structure is adopted. On top of the regular attention networks, stream attention is introduced to steer the decoder toward the most informative encoders. Experiments have been conducted on AMI and DIRHA multi-array corpora using the encoder-decoder architecture. Compared with the best single-array results, the proposed framework has achieved relative Word Error Rates (WERs) reduction of 3.7% and 9.7% in the two datasets, respectively, which is better than conventional strategies as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا