Do you want to publish a course? Click here

Photoinduced Lattice Instability in SnSe

318   0   0.0 ( 0 )
 Added by Yijing Huang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report femtosecond optical pump and x-ray diffraction probe experiments on SnSe. We find that under photoexcitation, SnSe has an instability towards an orthorhombically-distorted rocksalt structure that is not present in the equilibrium phase diagram. The new lattice instability is accompanied by a drastic softening of the lowest frequency A$_g$ phonon which is usually associated with the thermodynamic Pnma-Cmcm transition. However, our reconstruction of the transient atomic displacements shows that instead of moving towards the Cmcm structure, the material moves towards a more symmetric orthorhombic distortion of the rock-salt structure belonging to the Immm space group. The experimental results combined with density functional theory (DFT) simulations show that photoexcitation can act as a state-selective perturbation of the electronic distribution, in this case by promoting electrons from Se 4$p$ Sn 5$s$ derived bands from deep below the Fermi level. The subsequent potential energy landscape modified by such electronic excitation can reveal minima with metastable phases that are distinct from those accessible in equilibrium. These results may have implications for optical control of the thermoelectric, ferroelectric and topological properties of the monochalcogenides and related materials.



rate research

Read More

74 - M.P. Jiang , M. Trigo , S. Fahy 2015
The interactions between electrons and phonons drive a large array of technologically relevant material properties including ferroelectricity, thermoelectricity, and phase-change behaviour. In the case of many group IV-VI, V, and related materials, these interactions are strong and the materials exist near electronic and structural phase transitions. Their close proximity to phase instability produces a fragile balance among the various properties. The prototypical example is PbTe whose incipient ferroelectric behaviour has been associated with large phonon anharmonicity and thermoelectricity. Experimental measurements on PbTe reveal anomalous lattice dynamics, especially in the soft transverse optical phonon branch. This has been interpreted in terms of both giant anharmonicity and local symmetry breaking due to off-centering of the Pb ions. The observed anomalies have prompted renewed theoretical and computational interest, which has in turn revived focus on the extent that electron-phonon interactions drive lattice instabilities in PbTe and related materials. Here, we use Fourier-transform inelastic x-ray scattering (FT-IXS) to show that photo-injection of free carriers stabilizes the paraelectric state. With support from constrained density functional theory (CDFT) calculations, we find that photoexcitation weakens the long-range forces along the cubic direction tied to resonant bonding and incipient ferroelectricity. This demonstrates the importance of electronic states near the band edges in determining the equilibrium structure.
Laser-induced nonthermal melting in semiconductors has been studied for several decades, but the melting mechanism is still under debate. Based on real-time time-dependent density functional theory (rt-TDDFT) simulation, we reveal that the rapid nonthermal melting induced by photoexcitation in silicon originates from a local dynamic instability rather than a homogeneous inertial mechanism. Due to this local dynamic instability, any initial small random displacements can be amplified, create a local self-trapping mechanism for the excited carrier. This carrier self-trapping will amplify the initial randomness, cause locally nonthermal melting spots. Such locally melted spots gradually diffuse to the whole system achieving overall nonthermal melting within 200 fs. We also found that the initial hot carrier cooling towards the anti-bonding state is essential in order to realize this dynamic instability. This causes different cooling time depending on the excitation laser frequency, in accordance with the experimental observations. Our study provides an exquisite detail for the nonthermal melting mechanism.
To gain insight into the peculiar temperature dependence of the thermoelectric material SnSe, we employ many-body perturbation theory and explore the influence of the electron-phonon interaction on its electronic and transport properties. We show that a lattice dynamics characterized by soft highly-polar phonons induces a large thermal enhancement of the Frohlich interaction. We account for these phenomena in ab-initio calculations of the photoemission spectrum and electrical conductivity at finite temperature, unraveling the mechanisms behind recent experimental data. Our results reveal a complex interplay between lattice thermal expansion and Frohlich coupling, providing a new rationale for the in-silico prediction of transport coefficients of high-performance thermoelectrics.
Stannous selenide is a layered semiconductor that is a polar analogue of black phosphorus, and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle resolved photo-emission spectroscopy, optical reflection spectroscopy and magnetotransport measurements reveal a multiple-valley valence band structure and a quasi two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to $250~mathrm{cm^2/Vs}$ at $T=1.3~mathrm{K}$. SnSe is thus found to be a high quality, quasi two-dimensional semiconductor ideal for thermoelectric applications.
In-situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reaction and crystal growth to grain boundary dynamics. A major limitation of in-situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in-situ X-ray nanodiffraction to measure atomic-resolution diffraction patterns from single grains with up to 5 millisecond temporal resolution, and make the first real-time observation of grain rotation and lattice deformation during photoinduced chemical reactions. The grain rotation and lattice deformation associated with the chemical reactions are quantified to be as fast as 3.25 rad./sec. and as large as 0.5 Angstroms, respectively. The ability to measure atomic-resolution diffraction patterns from individual grains with several millisecond temporal resolution is expected to find broad applications in materials science, physics, chemistry, and nanoscience.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا