Do you want to publish a course? Click here

On the unsteady and lineal translation of a sphere through a viscoelastic fluid

130   0   0.0 ( 0 )
 Added by Mary Joens
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The unsteady, lineal translation of a solid spherical particle through viscoelastic fluids described by the Johnson-Segalman and Giesekus models is studied analytically. Solutions for the pressure and velocity fields as well as the force on the particle are expanded as a power series in the Weissenberg number. The momentum balance and constitutive equation are solved asymptotically for a steadily translating particle up to second order in the particle velocity, and rescaling of the pressure and velocity in the frequency domain is used to relate the solutions for steady lineal translation to those for unsteady lineal translation. The unsteady force at third order in the particle velocity is then calculated through application of the Lorentz reciprocal theorem, and it is shown that this weakly nonlinear contribution to the force can be expressed as part of a Volterra series. Through a series of examples, it is shown that a truncated representation of this Volterra series, which can be manipulated to describe the velocity in terms of an imposed force, is useful for analyzing specific time-dependent particle motions. Two examples studied using this relationship are the force on a particle suddenly set into motion and the velocity of a particle in response to a suddenly imposed steady force. Additionally, the weakly nonlinear response of particle captured by a harmonic trap moving lineally through the fluid is computed. This is an analog to active microrheology experiments, and can be used to explain how weakly nonlinear responses manifest in active microrheology experiments with spherical probes.



rate research

Read More

It is well known that the reversibility of Stokes flow makes it difficult for small microorganisms to swim. Inertial effects break this reversibility, allowing new mechanisms of propulsion and feeding. Therefore it is important to estimate the effect of unsteady and fluid inertia on the dynamics of microorganisms in flow. In this work, we show how to translate known inertial effects for non-motile organisms to motile ones, from passive to active particles. The method relies on a trick used earlier by Legendre and Magnaudet to deduce inertial corrections to the lift force on a bubble from Saffmans results for a solid sphere, using the fact that small inertial effects are determined by the far field of the disturbance flow. The method allows to compute the inertial effect of unsteady fluid accelerations on motile organisms, and the inertial forces they experience in steady shear flow. We explain why the method fails to describe the effect of convective fluid inertia.
By means of lattice-Boltzmann simulations the drag force on a sphere of radius R approaching a superhydrophobic striped wall has been investigated as a function of arbitrary separation h. Superhydrophobic (perfect-slip vs. no-slip) stripes are characterized by a texture period L and a fraction of the gas area $phi$. For very large values of h/R we recover the macroscopic formulae for a sphere moving towards a hydrophilic no-slip plane. For h/R=O(1) and smaller the drag force is smaller than predicted by classical theories for hydrophilic no-slip surfaces, but larger than expected for a sphere interacting with a uniform perfectly slipping wall. At a thinner gap, $hll R$ the force reduction compared to a classical result becomes more pronounced, and is maximized by increasing $phi$. In the limit of very small separations our simulation data are in quantitative agreement with an asymptotic equation, which relates a correction to a force for superhydrophobic slip to texture parameters. In addition, we examine the flow and pressure field and observe their oscillatory character in the transverse direction in the vicinity of the wall, which reflects the influence of the heterogeneity and anisotropy of the striped texture. Finally, we investigate the lateral force on the sphere, which is detectable in case of very small separations and is maximized by stripes with $phi=0.5$.
Viscoelastic fluids are a common subclass of rheologically complex materials that are encountered in diverse fields from biology to polymer processing. Often the flows of viscoelastic fluids are unstable in situations where ordinary Newtonian fluids are stable, owing to the nonlinear coupling of the elastic and viscous stresses. Perhaps more surprisingly, the instabilities produce flows with the hallmarks of turbulence -- even though the effective Reynolds numbers may be $O(1)$ or smaller. We provide perspectives on viscoelastic flow instabilities by integrating the input from speakers at a recent international workshop: historical remarks, characterization of fluids and flows, discussion of experimental and simulation tools, and modern questions and puzzles that motivate further studies of this fascinating subject. The materials here will be useful for researchers and educators alike, especially as the subject continues to evolve in both fundamental understanding and applications in engineering and the sciences.
Motivated by problems arising in the pneumatic actuation of controllers for micro-electromechanical systems (MEMS), labs-on-a-chip or biomimetic soft robots, and the study of microrheology of both gases and soft solids, we analyze the transient fluid--structure interaction (FSIs) between a viscoelastic tube conveying compressible flow at low Reynolds number. We express the density of the fluid as a linear function of the pressure, and we use the lubrication approximation to further simplify the fluid dynamics problem. On the other hand, the structural mechanics is governed by a modified Donnell shell theory accounting for Kelvin--Voigt-type linearly viscoelastic mechanical response. The fluid and structural mechanics problems are coupled through the tubes radial deformation and the hydrodynamic pressure. For small compressibility numbers and weak coupling, the equations are solved analytically via a perturbation expansion. Three illustrative problems are analyzed. First, we obtain exact (but implicit) solutions for the pressure for steady flow conditions. Second, we solve the transient problem of impulsive pressurization of the tubes inlet. Third, we analyze the transient response to an oscillatory inlet pressure. We show that an oscillatory inlet pressure leads to acoustic streaming in the tube, attributed to the nonlinear pressure gradient induced by the interplay of FSI and compressibility. Furthermore, we demonstrate an enhancement in the volumetric flow rate due to FSI coupling. The hydrodynamic pressure oscillations are shown to exhibit a low-pass frequency response (when averaging over the period of oscillations), while the frequency response of the tube deformation is similar to that of a band-pass filter.
In this work we consider theoretically the problem of a Newtonian droplet moving in an otherwise quiescent infinite viscoelastic fluid under the influence of an externally applied temperature gradient. The outer fluid is modelled by the Oldroyd-B equation, and the problem is solved for small Weissenberg and Capillary numbers in terms of a double perturbation expansion. We assume microgravity conditions and neglect the convective transport of energy and momentum. We derive expressions for the droplet migration speed and its shape in terms of the properties of both fluids. In the absence of shape deformation, the droplet speed decreases monotonically for sufficiently viscous inner fluids, while for fluids with a smaller inner-to-outer viscosity ratio, the droplet speed first increases and then decreases as a function of the Weissenberg number. For small but finite values of the Capillary number, the droplet speed behaves monotonically as a function of the applied temperature gradient for a fixed ratio of the Capillary and Weissenberg numbers. We demonstrate that this behaviour is related to the polymeric stresses deforming the droplet in the direction of its migration, while the associated changes in its speed are Newtonian in nature, being related to a change in the droplets hydrodynamic resistance and its internal temperature distribution. When compared to the results of numerical simulations, our theory exhibits a good predictive power for sufficiently small values of the Capillary and Weissenberg numbers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا