No Arabic abstract
Viscoelastic fluids are a common subclass of rheologically complex materials that are encountered in diverse fields from biology to polymer processing. Often the flows of viscoelastic fluids are unstable in situations where ordinary Newtonian fluids are stable, owing to the nonlinear coupling of the elastic and viscous stresses. Perhaps more surprisingly, the instabilities produce flows with the hallmarks of turbulence -- even though the effective Reynolds numbers may be $O(1)$ or smaller. We provide perspectives on viscoelastic flow instabilities by integrating the input from speakers at a recent international workshop: historical remarks, characterization of fluids and flows, discussion of experimental and simulation tools, and modern questions and puzzles that motivate further studies of this fascinating subject. The materials here will be useful for researchers and educators alike, especially as the subject continues to evolve in both fundamental understanding and applications in engineering and the sciences.
The effects of elasticity on the break-up of liquid threads in microfluidic cross-junctions is investigated using numerical simulations based on the lattice Boltzmann models (LBM). Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) and droplet formation downstream of the cross-junction (DC) (Liu & Zhang, ${it Phys. Fluids.}$ ${bf 23}$, 082101 (2011)). Viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel.
Motivated by problems arising in the pneumatic actuation of controllers for micro-electromechanical systems (MEMS), labs-on-a-chip or biomimetic soft robots, and the study of microrheology of both gases and soft solids, we analyze the transient fluid--structure interaction (FSIs) between a viscoelastic tube conveying compressible flow at low Reynolds number. We express the density of the fluid as a linear function of the pressure, and we use the lubrication approximation to further simplify the fluid dynamics problem. On the other hand, the structural mechanics is governed by a modified Donnell shell theory accounting for Kelvin--Voigt-type linearly viscoelastic mechanical response. The fluid and structural mechanics problems are coupled through the tubes radial deformation and the hydrodynamic pressure. For small compressibility numbers and weak coupling, the equations are solved analytically via a perturbation expansion. Three illustrative problems are analyzed. First, we obtain exact (but implicit) solutions for the pressure for steady flow conditions. Second, we solve the transient problem of impulsive pressurization of the tubes inlet. Third, we analyze the transient response to an oscillatory inlet pressure. We show that an oscillatory inlet pressure leads to acoustic streaming in the tube, attributed to the nonlinear pressure gradient induced by the interplay of FSI and compressibility. Furthermore, we demonstrate an enhancement in the volumetric flow rate due to FSI coupling. The hydrodynamic pressure oscillations are shown to exhibit a low-pass frequency response (when averaging over the period of oscillations), while the frequency response of the tube deformation is similar to that of a band-pass filter.
We investigate the gravitational settling of a long, model elastic filament in homogeneous isotropic turbulence. We show that the flow produces a strongly fluctuating settling velocity, whose mean is moderately enhanced over the still-fluid terminal velocity, and whose variance has a power-law dependence on the filaments weight but is surprisingly unaffected by its elasticity. In contrast, the tumbling of the filament is shown to be closely coupled to its stretching, and manifests as a Poisson process with a tumbling time that increases with the elastic relaxation time of the filament.
Diverse processes rely on the viscous flow of polymer solutions through porous media. In many cases, the macroscopic flow resistance abruptly increases above a threshold flow rate in a porous medium---but not in bulk solution. The reason why has been a puzzle for over half a century. Here, by directly visualizing the flow in a transparent 3D porous medium, we demonstrate that this anomalous increase is due to the onset of an elastic instability. We establish that the energy dissipated by the unstable flow fluctuations, which vary across pores, generates the anomalous increase in flow resistance through the entire medium. Thus, by linking the pore-scale onset of unstable flow to macroscopic transport, our work provides generally-applicable guidelines for predicting and controlling polymer solution flows.
Viscoelastic fluids are non-Newtonian fluids that exhibit both viscous and elastic characteristics in virtue of mechanisms to store energy and produce entropy. Usually the energy storage properties of such fluids are modelled using the same concepts as in the classical theory of nonlinear solids. Recently new models for elastic solids have been successfully developed by appealing to implicit constitutive relations, and these new models offer a different perspective to the old topic of elastic response of materials. In particular, a sub-class of implicit constitutive relations, namely relations wherein the left Cauchy-Green tensor is expressed as a function of stress is of interest. We show how to use this new perspective it the development of mathematical models for viscoelastic fluids, and we provide a discussion of the thermodynamic underpinnings of such models. We focus on the use of Gibbs free energy instead of the Helmholtz free energy, and using the standard Giesekus/Oldroyd-B models, we show how the alternative approach works in the case of well-known models. The proposed approach is straightforward to generalise to more complex setting wherein the classical approach might be impractical of even inapplicable.