Do you want to publish a course? Click here

Entropy-Based Proofs of Combinatorial Results on Bipartite Graphs

131   0   0.0 ( 0 )
 Added by Igal Sason
 Publication date 2021
and research's language is English
 Authors Igal Sason




Ask ChatGPT about the research

This work considers new entropy-based proofs of some known, or otherwise refined, combinatorial bounds for bipartite graphs. These include upper bounds on the number of the independent sets, lower bounds on the minimal number of colors in constrained edge coloring, and lower bounds on the number of walks of a given length in bipartite graphs. The proofs of these combinatorial results rely on basic properties of the Shannon entropy.



rate research

Read More

113 - Yizhe Zhu 2020
We consider the spectral gap of a uniformly chosen random $(d_1,d_2)$-biregular bipartite graph $G$ with $|V_1|=n, |V_2|=m$, where $d_1,d_2$ could possibly grow with $n$ and $m$. Let $A$ be the adjacency matrix of $G$. Under the assumption that $d_1geq d_2$ and $d_2=O(n^{2/3}),$ we show that $lambda_2(A)=O(sqrt{d_1})$ with high probability. As a corollary, combining the results from Tikhomirov and Youssef (2019), we confirm a conjecture in Cook (2017) that the second singular value of a uniform random $d$-regular digraph is $O(sqrt{d})$ for $1leq dleq n/2$ with high probability. This also implies that the second eigenvalue of a uniform random $d$-regular digraph is $O(sqrt{d})$ for $1leq dleq n/2$ with high probability. Assuming $d_2=O(1)$ and $d_1=O(n^2)$, we further prove that for a random $(d_1,d_2)$-biregular bipartite graph, $|lambda_i^2(A)-d_1|=O(sqrt{d_1(d_2-1)})$ for all $2leq ileq n+m-1$ with high probability. The proofs of the two results are based on the size biased coupling method introduced in Cook, Goldstein, and Johnson (2018) for random $d$-regular graphs and several new switching operations we defined for random bipartite biregular graphs.
A conventional context for supersymmetric problems arises when we consider systems containing both boson and fermion operators. In this note we consider the normal ordering problem for a string of such operators. In the general case, upon which we touch briefly, this problem leads to combinatorial numbers, the so-called Rook numbers. Since we assume that the two species, bosons and fermions, commute, we subsequently restrict ourselves to consideration of a single species, single-mode boson monomials. This problem leads to elegant generalisations of well-known combinatorial numbers, specifically Bell and Stirling numbers. We explicitly give the generating functions for some classes of these numbers. In this note we concentrate on the combinatorial graph approach, showing how some important classical results of graph theory lead to transparent representations of the combinatorial numbers associated with the boson normal ordering problem.
This note gives a detailed proof of the following statement. Let $din mathbb{N}$ and $m,n ge d + 1$, with $m + n ge binom{d+2}{2} + 1$. Then the complete bipartite graph $K_{m,n}$ is generically globally rigid in dimension $d$.
For various purposes and, in particular, in the context of data compression, a graph can be examined at three levels. Its structure can be described as the unlabeled version of the graph; then the labeling of its structure can be added; and finally, given then structure and labeling, the contents of the labels can be described. Determining the amount of information present at each level and quantifying the degree of dependence between them, requires the study of symmetry, graph automorphism, entropy, and graph compressibility. In this paper, we focus on a class of small-world graphs. These are geometric random graphs where vertices are first connected to their nearest neighbors on a circle and then pairs of non-neighbors are connected according to a distance-dependent probability distribution. We establish the degree distribution of this model, and use it to prove the models asymmetry in an appropriate range of parameters. Then we derive the relevant entropy and structural entropy of these random graphs, in connection with graph compression.
The symmetries of complex molecular structures can be modeled by the {em topological symmetry group} of the underlying embedded graph. It is therefore important to understand which topological symmetry groups can be realized by particular abstract graphs. This question has been answered for complete graphs; it is natural next to consider complete bipartite graphs. In previous work we classified the complete bipartite graphs that can realize topological symmetry groups isomorphic to $A_4$, $S_4$ or $A_5$; in this paper we determine which complete bipartite graphs have an embedding in $S^3$ whose topological symmetry group is isomorphic to $mathbb{Z}_m$, $D_m$, $mathbb{Z}_r times mathbb{Z}_s$ or $(mathbb{Z}_r times mathbb{Z}_s) ltimes mathbb{Z}_2$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا