Do you want to publish a course? Click here

On the second eigenvalue of random bipartite biregular graphs

114   0   0.0 ( 0 )
 Added by Yizhe Zhu
 Publication date 2020
  fields
and research's language is English
 Authors Yizhe Zhu




Ask ChatGPT about the research

We consider the spectral gap of a uniformly chosen random $(d_1,d_2)$-biregular bipartite graph $G$ with $|V_1|=n, |V_2|=m$, where $d_1,d_2$ could possibly grow with $n$ and $m$. Let $A$ be the adjacency matrix of $G$. Under the assumption that $d_1geq d_2$ and $d_2=O(n^{2/3}),$ we show that $lambda_2(A)=O(sqrt{d_1})$ with high probability. As a corollary, combining the results from Tikhomirov and Youssef (2019), we confirm a conjecture in Cook (2017) that the second singular value of a uniform random $d$-regular digraph is $O(sqrt{d})$ for $1leq dleq n/2$ with high probability. This also implies that the second eigenvalue of a uniform random $d$-regular digraph is $O(sqrt{d})$ for $1leq dleq n/2$ with high probability. Assuming $d_2=O(1)$ and $d_1=O(n^2)$, we further prove that for a random $(d_1,d_2)$-biregular bipartite graph, $|lambda_i^2(A)-d_1|=O(sqrt{d_1(d_2-1)})$ for all $2leq ileq n+m-1$ with high probability. The proofs of the two results are based on the size biased coupling method introduced in Cook, Goldstein, and Johnson (2018) for random $d$-regular graphs and several new switching operations we defined for random bipartite biregular graphs.



rate research

Read More

We compute the eigenvalue fluctuations of uniformly distributed random biregular bipartite graphs with fixed and growing degrees for a large class of analytic functions. As a key step in the proof, we obtain a total variation distance bound for the Poisson approximation of the number of cycles and cyclically non-backtracking walks in random biregular bipartite graphs, which might be of independent interest. As an application, we translate the results to adjacency matrices of uniformly distributed random regular hypergraphs.
138 - Hamed Amini , Marc Lelarge 2011
In this paper we study the impact of random exponential edge weights on the distances in a random graph and, in particular, on its diameter. Our main result consists of a precise asymptotic expression for the maximal weight of the shortest weight paths between all vertices (the weighted diameter) of sparse random graphs, when the edge weights are i.i.d. exponential random variables.
This is the sixth in a series of articles devoted to showing that a typical covering map of large degree to a fixed, regular graph has its new adjacency eigenvalues within the bound conjectured by Alon for random regular graphs. In this article we show that if the fixed graph is regular Ramanujan, then the {em algebraic power} of the model of random covering graphs is $+infty$. This implies a number of interesting results, such as (1) one obtains the upper and lower bounds---matching to within a multiplicative constant---for the probability that a random covering map has some new adjacency eigenvalue outside the Alon bound, and (2) with probability smaller than any negative power of the degree of the covering map, some new eigenvalue fails to be within the Alon bound without the covering map containing one of finitely many tangles as a subgraph (and this tangle containment event has low probability).
For each $n ge 1$, let $mathrm{d}^n=(d^{n}(i),1 le i le n)$ be a sequence of positive integers with even sum $sum_{i=1}^n d^n(i) ge 2n$. Let $(G_n,T_n,Gamma_n)$ be uniformly distributed over the set of simple graphs $G_n$ with degree sequence $mathrm{d}^n$, endowed with a spanning tree $T_n$ and rooted along an oriented edge $Gamma_n$ of $G_n$ which is not an edge of $T_n$. Under a finite variance assumption on degrees in $G_n$, we show that, after rescaling, $T_n$ converges in distribution to the Brownian continuum random tree as $n to infty$. Our main tool is a new version of Pitmans additive coalescent (https://doi.org/10.1006/jcta.1998.2919), which can be used to build both random trees with a fixed degree sequence, and random tree-weighted graphs with a fixed degree sequence. As an input to the proof, we also derive a Poisson approximation theorem for the number of loops and multiple edges in the superposition of a fixed graph and a random graph with a given degree sequence sampled according to the configuration model; we find this to be of independent interest.
We consider the contact process on the model of hyperbolic random graph, in the regime when the degree distribution obeys a power law with exponent $chi in(1,2)$ (so that the degree distribution has finite mean and infinite second moment). We show that the probability of non-extinction as the rate of infection goes to zero decays as a power law with an exponent that only depends on $chi$ and which is the same as in the configuration model, suggesting some universality of this critical exponent. We also consider fini
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا