Do you want to publish a course? Click here

Multi-RIS Discrete-Phase Encoding for Interpath-Interference-Free Channel Estimation

138   0   0.0 ( 0 )
 Added by Kamran Keykhosravi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Reconfigurable intelligent surfaces (RISs) are one of the foremost technological enablers of future wireless systems. They improve communication and localization by providing a strong non-line-of-sight path to the receiver. In this paper, we propose a pilot transmission method to enable the receiver to separate signals arriving from different RISs and from the uncontrolled multipath. This facilitates channel estimation and localization, as the channel or its geometric parameters can be estimated for each path separately. Our method is based on designing temporal phase profiles that are orthogonal across RISs without affecting the RIS beamforming capabilities. We take into consideration the limited resolution of the RIS phase shifters and show that in the presence of this practical limitation, orthogonal phase profiles can be designed based on Butson-type Hadamard matrices. For a localization scenario, we show that with our proposed method the estimator can attain the theoretical lower bound even with one-bit RIS phase resolution.



rate research

Read More

A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links connecting the base station (BS) and the mobile station (MS) via the RIS. Thereby the channel (parameter) estimation at the BS/MS and the related message feedback mechanism are needed. In this paper, we adopt a two-stage channel estimation scheme for the RIS-aided millimeter wave (mmWave) MIMO channels using an iterative reweighted method to sequentially estimate the channel parameters. We evaluate the average spectrum efficiency (SE) and the RIS beamforming gain of the proposed scheme and demonstrate that it achieves high-resolution estimation with the average SE comparable to that with perfect CSI.
Reconfigurable intelligent surfaces (RISs) are considered as potential technologies for the upcoming sixth-generation (6G) wireless communication system. Various benefits brought by deploying one or multiple RISs include increased spectrum and energy efficiency, enhanced connectivity, extended communication coverage, reduced complexity at transceivers, and even improved localization accuracy. However, to unleash their full potential, fundamentals related to RISs, ranging from physical-layer (PHY) modelling to RIS phase control, need to be addressed thoroughly. In this paper, we provide an overview of some timely research problems related to the RIS technology, i.e., PHY modelling (including also physics), channel estimation, potential RIS architectures, and RIS phase control (via both model-based and data-driven approaches), along with recent numerical results. We envision that more efforts will be devoted towards intelligent wireless environments, enabled by RISs.
107 - Gui Zhou , Cunhua Pan , Hong Ren 2021
Channel estimation in the RIS-aided massive multiuser multiple-input single-output (MU-MISO) wireless communication systems is challenging due to the passive feature of RIS and the large number of reflecting elements that incur high channel estimation overhead. To address this issue, we propose a novel cascaded channel estimation strategy with low pilot overhead by exploiting the sparsity and the correlation of multiuser cascaded channels in millimeter-wave massive MISO systems. Based on the fact that the phsical positions of the BS, the RIS and users may not change in several or even tens of consecutive channel coherence blocks, we first estimate the full channel state information (CSI) including all the angle and gain information in the first coherence block, and then only re-estimate the channel gains in the remaining coherence blocks with much less pilot overhead. In the first coherence block, we propose a two-phase channel estimation method, in which the cascaded channel of one typical user is estimated in Phase I based on the linear correlation among cascaded paths, while the cascaded channels of other users are estimated in Phase II by utilizing the partial CSI of the common base station (BS)-RIS channel obtained in Phase I. The total theoretical minimum pilot overhead in the first coherence block is $8J-2+(K-1)leftlceil (8J-2)/Lrightrceil $, where $K$, $L$ and $J$ denote the numbers of users, paths in the BS-RIS channel and paths in the RIS-user channel, respectively. In each of the remaining coherence blocks, the minimum pilot overhead is $JK$. Moreover, the training phase shift matrices at the RIS are optimized to improve the estimation performance.
Channel estimation is challenging for the reconfigurable intelligence surface (RIS) assisted millimeter wave (mmWave) communications. Since the number of coefficients of the cascaded channels in such systems is closely dependent on the product of the number of base station antennas and the number of RIS elements, the pilot overhead would be prohibitively high. In this letter, we propose a cascaded channel estimation framework for an RIS assisted mmWave multiple-input multiple-output system, where the wideband effect on transmission model is considered. Then, we transform the wideband channel estimation into a parameter recovery problem and use a few pilot symbols to detect the channel parameters by the Newtonized orthogonal matching pursuit algorithm. Moreover, the Cramer-Rao lower bound on the channel estimation is introduced. Numerical results show the effectiveness of the proposed channel estimation scheme.
We consider the channel estimation problem in point-to-point reconfigurable intelligent surface (RIS)-aided millimeter-wave (mmWave) MIMO systems. By exploiting the low-rank nature of mmWave channels in the angular domains, we propose a non-iterative Two-stage RIS-aided Channel Estimation (TRICE) framework, where every stage is formulated as a multidimensional direction-of-arrival (DOA) estimation problem. As a result, our TRICE framework is very general in the sense that any efficient multidimensional DOA estimation solution can be readily used in every stage to estimate the associated channel parameters. Numerical results show that the TRICE framework has a lower training overhead and a lower computational complexity, as compared to benchmark solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا