Do you want to publish a course? Click here

Channel Estimation and Hybrid Architectures for RIS-Assisted Communications

325   0   0.0 ( 0 )
 Added by Jiguang He
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Reconfigurable intelligent surfaces (RISs) are considered as potential technologies for the upcoming sixth-generation (6G) wireless communication system. Various benefits brought by deploying one or multiple RISs include increased spectrum and energy efficiency, enhanced connectivity, extended communication coverage, reduced complexity at transceivers, and even improved localization accuracy. However, to unleash their full potential, fundamentals related to RISs, ranging from physical-layer (PHY) modelling to RIS phase control, need to be addressed thoroughly. In this paper, we provide an overview of some timely research problems related to the RIS technology, i.e., PHY modelling (including also physics), channel estimation, potential RIS architectures, and RIS phase control (via both model-based and data-driven approaches), along with recent numerical results. We envision that more efforts will be devoted towards intelligent wireless environments, enabled by RISs.



rate research

Read More

Channel estimation is challenging for the reconfigurable intelligence surface (RIS) assisted millimeter wave (mmWave) communications. Since the number of coefficients of the cascaded channels in such systems is closely dependent on the product of the number of base station antennas and the number of RIS elements, the pilot overhead would be prohibitively high. In this letter, we propose a cascaded channel estimation framework for an RIS assisted mmWave multiple-input multiple-output system, where the wideband effect on transmission model is considered. Then, we transform the wideband channel estimation into a parameter recovery problem and use a few pilot symbols to detect the channel parameters by the Newtonized orthogonal matching pursuit algorithm. Moreover, the Cramer-Rao lower bound on the channel estimation is introduced. Numerical results show the effectiveness of the proposed channel estimation scheme.
98 - Xiuhong Wei , Decai Shen , 2021
The reconfigurable intelligent surface (RIS) with low hardware cost and energy consumption has been recognized as a potential technique for future 6G communications to enhance coverage and capacity. To achieve this goal, accurate channel state information (CSI) in RIS assisted wireless communication system is essential for the joint beamforming at the base station (BS) and the RIS. However, channel estimation is challenging, since a large number of passive RIS elements cannot transmit, receive, or process signals. In the first part of this invited paper, we provide an overview of the fundamentals, solutions, and future opportunities of channel estimation in the RIS assisted wireless communication system. It is noted that a new channel estimation scheme with low pilot overhead will be provided in the second part of this paper.
Reconfigurable intelligent surfaces (RISs) have been recently considered as a promising candidate for energy-efficient solutions in future wireless networks. Their dynamic and low-power configuration enables coverage extension, massive connectivity, and low-latency communications. Due to a large number of unknown variables referring to the RIS unit elements and the transmitted signals, channel estimation and signal recovery in RIS-based systems are the ones of the most critical technical challenges. To address this problem, we focus on the RIS-assisted wireless communication system and present two joint channel estimation and signal recovery schemes based on message passing algorithms in this paper. Specifically, the proposed bidirectional scheme applies the Taylor series expansion and Gaussian approximation to simplify the sum-product procedure in the formulated problem. In addition, the inner iteration that adopts two variants of approximate message passing algorithms is incorporated to ensure robustness and convergence. Two ambiguities removal methods are also discussed in this paper. Our simulation results show that the proposed schemes show the superiority over the state-of-art benchmark method. We also provide insights on the impact of different RIS parameter settings on the proposed schemes.
Reconfigurable Intelligent Surfaces (RISs) have been recently considered as an energy-efficient solution for future wireless networks. Their dynamic and low-power configuration enables coverage extension, massive connectivity, and low-latency communications. Channel estimation and signal recovery in RISbased systems are among the most critical technical challenges, due to the large number of unknown variables referring to the RIS unit elements and the transmitted signals. In this paper, we focus on the downlink of a RIS-assisted multi-user Multiple Input Single Output (MISO) communication system and present a joint channel estimation and signal recovery scheme based on the PARAllel FACtor (PARAFAC) decomposition. This decomposition unfolds the cascaded channel model and facilitates signal recovery using the Bilinear Generalized Approximate Message Passing (BiG-AMP) algorithm. The proposed method includes an alternating least squares algorithm to iteratively estimate the equivalent matrix, which consists of the transmitted signals and the channels between the base station and RIS, as well as the channels between the RIS and the multiple users. Our selective simulation results show that the proposed scheme outperforms a benchmark scheme that uses genie-aided information knowledge. We also provide insights on the impact of different RIS parameter settings on the proposed scheme.
A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links connecting the base station (BS) and the mobile station (MS) via the RIS. Thereby the channel (parameter) estimation at the BS/MS and the related message feedback mechanism are needed. In this paper, we adopt a two-stage channel estimation scheme for the RIS-aided millimeter wave (mmWave) MIMO channels using an iterative reweighted method to sequentially estimate the channel parameters. We evaluate the average spectrum efficiency (SE) and the RIS beamforming gain of the proposed scheme and demonstrate that it achieves high-resolution estimation with the average SE comparable to that with perfect CSI.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا