Do you want to publish a course? Click here

Enhanced many-body effects in the excitation spectrum of a weakly-interacting rotating Bose-Einstein condensate

93   0   0.0 ( 0 )
 Added by Raphael Beinke
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The excitation spectrum of a highly-condensed two-dimensional trapped Bose-Einstein condensate (BEC) is investigated within the rotating frame of reference. The rotation is used to transfer high-lying excited states to the low-energy spectrum of the BEC. We employ many-body linear-response theory and show that, once the rotation leads to a quantized vortex in the ground state, already the low-energy part of the excitation spectrum shows substantial many-body effects beyond the realm of mean-field theory. We demonstrate numerically that the many-body effects grow with the vorticity of the ground state, meaning that the rotation enhances them even for very weak repulsion. Furthermore, we explore the impact of the number of bosons $N$ in the condensate on a low-lying single-particle excitation, which is describable within mean-field theory. Our analysis shows deviations between the many-body and mean-field results which clearly persist when $N$ is increased up to the experimentally relevant regime, typically ranging from several thousand up to a million bosons in size. Implications are briefly discussed.



rate research

Read More

We study the decay mechanism of the gapped lowest-lying excitation of a quasi-pure box-trapped atomic Bose-Einstein condensate. Owing to the absence of lower-energy modes, or direct coupling to an external bath, this excitation is protected against one-body (linear) decay and the damping mechanism is exclusively nonlinear. We develop a universal theoretical model that explains this fundamental nonlinear damping as a process whereby two quanta of the gapped lowest excitation mode couple to a higher-energy mode, which subsequently decays into a continuum. We find quantitative agreement between our experiments and the predictions of this model. Finally, by strongly driving the system below its (lowest) resonant frequency we observe third-harmonic generation, a hallmark of nonlinear behavior.
We report the direct observation of resistive flow through a weak link in a weakly interacting atomic Bose-Einstein condensate. Two weak links separate our ring-shaped superfluid atomtronic circuit into two distinct regions, a source and a drain. Motion of these weak links allows for creation of controlled flow between the source and the drain. At a critical value of the weak link velocity, we observe a transition from superfluid flow to superfluid plus resistive flow. Working in the hydrodynamic limit, we observe a conductivity that is 4 orders of magnitude larger than previously reported conductivities for a Bose-Einstein condensate with a tunnel junction. Good agreement with zero-temperature Gross-Pitaevskii simulations and a phenomenological model based on phase slips indicate that the creation of excitations plays an important role in the resulting conductivity. Our measurements of resistive flow elucidate the microscopic origin of the dissipation and pave the way for more complex atomtronic devices.
We study experimentally and numerically the quasi-bidimensional transport of a $^{87}$Rb Bose-Einstein condensate launched with a velocity $v_0$ inside a disordered optical potential created by a speckle pattern. A time-of-flight analysis reveals a pronounced enhanced density peak in the backscattering direction $-v_0$, a feature reminiscent of coherent backscattering. Detailed numerical simulations indicate however that other effects also contribute to this enhancement, including a backscattering echo due to the position-momentum correlations of the initial wave packet.
203 - Zhao Liu , Hongli Guo , Shu Chen 2009
We investigate the 2D weakly interacting Bose-Einstein condensate in a rotating trap by the tools of quantum information theory. The critical exponents of the ground state fidelity susceptibility and the correlation length of the system are obtained for the quantum phase transition when the frst vortex is formed. We also find the single-particle entanglement can be an indicator of the angular momentums for some real ground states. The single-particle entanglement of fractional quantum Hall states such as Laughlin state and Pfaffian state is also studied.
We demonstrate the operation of an atom interferometer based on a weakly interacting Bose-Einstein condensate. We strongly reduce the interaction induced decoherence that usually limits interferometers based on trapped condensates by tuning the s-wave scattering length almost to zero via a magnetic Feshbach resonance. We employ a $^{39}$K condensate trapped in an optical lattice, where Bloch oscillations are forced by gravity. With a control of the scattering length better that 0.1 $a_0$ we achieve coherence times of several hundreds of ms. The micrometric sizes of the atomic sample make our sensor an ideal candidate for measuring forces with high spatial resolution. Our technique can be in principle extended to other measurement schemes opening new possibilities in the field of trapped atom interferometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا