No Arabic abstract
Blockchain assisted federated learning (BFL) has been intensively studied as a promising technology to process data at the network edge in a distributed manner. In this paper, we focus on BFL over wireless environments with varying channels and energy harvesting at clients. We are interested in proposing dynamic resource allocation (i.e., transmit power, computation frequency for model training and block mining for each client) and client scheduling (DRACS) to maximize the long-term time average (LTA) training data size with an LTA energy consumption constraint. Specifically, we first define the Lyapunov drift by converting the LTA energy consumption to a queue stability constraint. Then, we construct a Lyapunov drift-plus-penalty ratio function to decouple the original stochastic problem into multiple deterministic optimizations along the time line. Our construction is capable of dealing with uneven durations of communication rounds. To make the one-shot deterministic optimization problem of combinatorial fractional form tractable, we next convert the fractional problem into a subtractive-form one by Dinkelbach method, which leads to the asymptotically optimal solution in an iterative way. In addition, the closed-form of the optimal resource allocation and client scheduling is obtained in each iteration with a low complexity. Furthermore, we conduct the performance analysis for the proposed algorithm, and discover that the LTA training data size and energy consumption obey an [$mathcal{O}(1/V)$, $mathcal{O}(sqrt{V})$] trade-off. Our experimental results show that the proposed algorithm can provide both higher learning accuracy and faster convergence with limited time and energy consumption based on the MNIST and Fashion-MNIST datasets.
With the development of federated learning (FL), mobile devices (MDs) are able to train their local models with private data and sends them to a central server for aggregation, thereby preventing sensitive raw data leakage. In this paper, we aim to improve the training performance of FL systems in the context of wireless channels and stochastic energy arrivals of MDs. To this purpose, we dynamically optimize MDs transmission power and training task scheduling. We first model this dynamic programming problem as a constrained Markov decision process (CMDP). Due to high dimensions rooted from our CMDP problem, we propose online stochastic learning methods to simplify the CMDP and design online algorithms to obtain an efficient policy for all MDs. Since there are long-term constraints in our CMDP, we utilize Lagrange multipliers approach to tackle this issue. Furthermore, we prove the convergence of the proposed online stochastic learning algorithm. Numerical results indicate that the proposed algorithms can achieve better performance than the benchmark algorithms.
There is an increasing interest in a fast-growing machine learning technique called Federated Learning, in which the model training is distributed over mobile user equipments (UEs), exploiting UEs local computation and training data. Despite its advantages in data privacy-preserving, Federated Learning (FL) still has challenges in heterogeneity across UEs data and physical resources. We first propose a FL algorithm which can handle the heterogeneous UEs data challenge without further assumptions except strongly convex and smooth loss functions. We provide the convergence rate characterizing the trade-off between local computation rounds of UE to update its local model and global communication rounds to update the FL global model. We then employ the proposed FL algorithm in wireless networks as a resource allocation optimization problem that captures the trade-off between the FL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FL is non-convex, we exploit this problems structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights to problem design. Finally, we illustrate the theoretical analysis for the new algorithm with Tensorflow experiments and extensive numerical results for the wireless resource allocation sub-problems. The experiment results not only verify the theoretical convergence but also show that our proposed algorithm outperforms the vanilla FedAvg algorithm in terms of convergence rate and testing accuracy.
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server. The performance of uploaded models in such situations can vary widely due to imbalanced data distributions, potential demands on privacy protections, and quality of transmissions. In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each clients differential privacy (DP) requirement. We solve this problem in the framework of multi-agent multi-armed bandit (MAMAB) to deal with the situation where there are multiple clients confornting different unknown transmission environments, e.g., channel fading and interferences. Specifically, we first transform the long-term constraints on both training performance and each clients DP into a virtual queue based on the Lyapunov drift technique. Then, we convert the MAMAB to a max-min bipartite matching problem at each communication round, by estimating rewards with the upper confidence bound (UCB) approach. More importantly, we propose two efficient solutions to this matching problem, i.e., modified Hungarian algorithm and greedy matching with a better alternative (GMBA), in which the first one can achieve the optimal solution with a high complexity while the second one approaches a better trade-off by enabling a verified low-complexity with little performance loss. In addition, we develop an upper bound on the expected regret of this MAMAB based FL framework, which shows a linear growth over the logarithm of communication rounds, justifying its theoretical feasibility. Extensive experimental results are conducted to validate the effectiveness of our proposed algorithms, and the impacts of various parameters on the FL performance over wireless edge networks are also discussed.
Federated learning (FL), as a distributed machine learning paradigm, promotes personal privacy by local data processing at each client. However, relying on a centralized server for model aggregation, standard FL is vulnerable to server malfunctions, untrustworthy server, and external attacks. To address this issue, we propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL). In a round of the proposed BLADE-FL, each client broadcasts the trained model to other clients, aggregates its own model with received ones, and then competes to generate a block before its local training of the next round. We evaluate the learning performance of BLADE-FL, and develop an upper bound on the global loss function. Then we verify that this bound is convex with respect to the number of overall aggregation rounds K, and optimize the computing resource allocation for minimizing the upper bound. We also note that there is a critical problem of training deficiency, caused by lazy clients who plagiarize others trained models and add artificial noises to disguise their cheating behaviors. Focusing on this problem, we explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients. Based on MNIST and Fashion-MNIST datasets, we show that the experimental results are consistent with the analytical ones. To be specific, the gap between the developed upper bound and experimental results is lower than 5%, and the optimized K based on the upper bound can effectively minimize the loss function.
To ensure uninterrupted services to the cloud clients from federated cloud providers, it is important to guarantee an efficient allocation of the cloud resources to users to improve the rate of client satisfaction and the quality of the service provisions. It is better to get as more computing and storage resources as possible. In cloud domain several Multi Agent Resource Allocation methods have been proposed to implement the problem of dynamic resource allocation. However the problem is still open and many works to do in this field. In cloud computing robustness is important so in this paper we focus on auto-adaptive method to deal with changes of open federated cloud computing environment. Our approach is hybrid, we first adopt an existing organizations optimization approach for self organization in broker agent organization to combine it with already existing Multi Agent Resource Allocation approach on Federated Clouds. We consider an open clouds federation environment which is dynamic and in constant evolution, new cloud operators can join the federation or leave this one. At the same time our approach is multi criterion which can take in account various parameters (i.e. computing load balance of mediator agent, geographical distance (network delay) between costumer and provider...).