No Arabic abstract
Text analytics directly on compression (TADOC) has proven to be a promising technology for big data analytics. GPUs are extremely popular accelerators for data analytics systems. Unfortunately, no work so far shows how to utilize GPUs to accelerate TADOC. We describe G-TADOC, the first framework that provides GPU-based text analytics directly on compression, effectively enabling efficient text analytics on GPUs without decompressing the input data. G-TADOC solves three major challenges. First, TADOC involves a large amount of dependencies, which makes it difficult to exploit massive parallelism on a GPU. We develop a novel fine-grained thread-level workload scheduling strategy for GPU threads, which partitions heavily-dependent loads adaptively in a fine-grained manner. Second, in developing G-TADOC, thousands of GPU threads writing to the same result buffer leads to inconsistency while directly using locks and atomic operations lead to large synchronization overheads. We develop a memory pool with thread-safe data structures on GPUs to handle such difficulties. Third, maintaining the sequence information among words is essential for lossless compression. We design a sequence-support strategy, which maintains high GPU parallelism while ensuring sequence information. Our experimental evaluations show that G-TADOC provides 31.1x average speedup compared to state-of-the-art TADOC.
This article provides a comprehensive description of Text Analytics Directly on Compression (TADOC), which enables direct document analytics on compressed textual data. The article explains the concept of TADOC and the challenges to its effective realizations. Additionally, a series of guidelines and technical solutions that effectively address those challenges, including the adoption of a hierarchical compression method and a set of novel algorithms and data structure designs, are presented. Experiments on six data analytics tasks of various complexities show that TADOC can save 90.8% storage space and 87.9% memory usage, while halving data processing times.
Modern day computing increasingly relies on specialization to satiate growing performance and efficiency requirements. A core challenge in designing such specialized hardware architectures is how to perform mapping space search, i.e., search for an optimal mapping from algorithm to hardware. Prior work shows that choosing an inefficient mapping can lead to multiplicative-factor efficiency overheads. Additionally, the search space is not only large but also non-convex and non-smooth, precluding advanced search techniques. As a result, previous works are forced to implement mapping space search using expert choices or sub-optimal search heuristics. This work proposes Mind Mappings, a novel gradient-based search method for algorithm-accelerator mapping space search. The key idea is to derive a smooth, differentiable approximation to the otherwise non-smooth, non-convex search space. With a smooth, differentiable approximation, we can leverage efficient gradient-based search algorithms to find high-quality mappings. We extensively compare Mind Mappings to black-box optimization schemes used in prior work. When tasked to find mappings for two important workloads (CNN and MTTKRP), the proposed search finds mappings that achieve an average $1.40times$, $1.76times$, and $1.29times$ (when run for a fixed number of steps) and $3.16times$, $4.19times$, and $2.90times$ (when run for a fixed amount of time) better energy-delay product (EDP) relative to Simulated Annealing, Genetic Algorithms and Reinforcement Learning, respectively. Meanwhile, Mind Mappings returns mappings with only $5.32times$ higher EDP than a possibly unachievable theoretical lower-bound, indicating proximity to the global optima.
Recently, significant accuracy improvement has been achieved for acoustic recognition systems by increasing the model size of Long Short-Term Memory (LSTM) networks. Unfortunately, the ever-increasing size of LSTM model leads to inefficient designs on FPGAs due to the limited on-chip resources. The previous work proposes to use a pruning based compression technique to reduce the model size and thus speedups the inference on FPGAs. However, the random nature of the pruning technique transforms the dense matrices of the model to highly unstructured sparse ones, which leads to unbalanced computation and irregular memory accesses and thus hurts the overall performance and energy efficiency. In contrast, we propose to use a structured compression technique which could not only reduce the LSTM model size but also eliminate the irregularities of computation and memory accesses. This approach employs block-circulant instead of sparse matrices to compress weight matrices and reduces the storage requirement from $mathcal{O}(k^2)$ to $mathcal{O}(k)$. Fast Fourier Transform algorithm is utilized to further accelerate the inference by reducing the computational complexity from $mathcal{O}(k^2)$ to $mathcal{O}(ktext{log}k)$. The datapath and activation functions are quantized as 16-bit to improve the resource utilization. More importantly, we propose a comprehensive framework called C-LSTM to automatically optimize and implement a wide range of LSTM variants on FPGAs. According to the experimental results, C-LSTM achieves up to 18.8X and 33.5X gains for performance and energy efficiency compared with the state-of-the-art LSTM implementation under the same experimental setup, and the accuracy degradation is very small.
Modern video data management systems store videos as a single encoded file, which significantly limits possible storage level optimizations. We design, implement, and evaluate TASM, a new tile-based storage manager for video data. TASM uses a feature in modern video codecs called tiles that enables spatial random access into encoded videos. TASM physically tunes stored videos by optimizing their tile layouts given the video content and a query workload. Additionally, TASM dynamically tunes that layout in response to changes in the query workload or if the query workload and video contents are incrementally discovered. Finally, TASM also produces efficient initial tile layouts for newly ingested videos. We demonstrate that TASM can speed up subframe selection queries by an average of over 50% and up to 94%. TASM can also improve the throughput of the full scan phase of object detection queries by up to 2X.
In this paper, we present a MapReduce-based framework for evaluating SPARQL queries on GPU (named MapSQ) to large-scale RDF datesets efficiently by applying both high performance. Firstly, we develop a MapReduce-based Join algorithm to handle SPARQL queries in a parallel way. Secondly, we present a coprocessing strategy to manage the process of evaluating queries where CPU is used to assigns subqueries and GPU is used to compute the join of subqueries. Finally, we implement our proposed framework and evaluate our proposal by comparing with two popular and latest SPARQL query engines gStore and gStoreD on the LUBM benchmark. The experiments demonstrate that our proposal MapSQ is highly efficient and effective (up to 50% speedup).