Do you want to publish a course? Click here

Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search

109   0   0.0 ( 0 )
 Added by Kartik Hegde
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Modern day computing increasingly relies on specialization to satiate growing performance and efficiency requirements. A core challenge in designing such specialized hardware architectures is how to perform mapping space search, i.e., search for an optimal mapping from algorithm to hardware. Prior work shows that choosing an inefficient mapping can lead to multiplicative-factor efficiency overheads. Additionally, the search space is not only large but also non-convex and non-smooth, precluding advanced search techniques. As a result, previous works are forced to implement mapping space search using expert choices or sub-optimal search heuristics. This work proposes Mind Mappings, a novel gradient-based search method for algorithm-accelerator mapping space search. The key idea is to derive a smooth, differentiable approximation to the otherwise non-smooth, non-convex search space. With a smooth, differentiable approximation, we can leverage efficient gradient-based search algorithms to find high-quality mappings. We extensively compare Mind Mappings to black-box optimization schemes used in prior work. When tasked to find mappings for two important workloads (CNN and MTTKRP), the proposed search finds mappings that achieve an average $1.40times$, $1.76times$, and $1.29times$ (when run for a fixed number of steps) and $3.16times$, $4.19times$, and $2.90times$ (when run for a fixed amount of time) better energy-delay product (EDP) relative to Simulated Annealing, Genetic Algorithms and Reinforcement Learning, respectively. Meanwhile, Mind Mappings returns mappings with only $5.32times$ higher EDP than a possibly unachievable theoretical lower-bound, indicating proximity to the global optima.



rate research

Read More

Data-driven, automatic design space exploration of neural accelerator architecture is desirable for specialization and productivity. Previous frameworks focus on sizing the numerical architectural hyper-parameters while neglect searching the PE connectivities and compiler mappings. To tackle this challenge, we propose Neural Accelerator Architecture Search (NAAS) which holistically searches the neural network architecture, accelerator architecture, and compiler mapping in one optimization loop. NAAS composes highly matched architectures together with efficient mapping. As a data-driven approach, NAAS rivals the human design Eyeriss by 4.4x EDP reduction with 2.7% accuracy improvement on ImageNet under the same computation resource, and offers 1.4x to 3.5x EDP reduction than only sizing the architectural hyper-parameters.
118 - Yonggan Fu , Yang Zhao , Qixuan Yu 2021
The recent breakthroughs of deep neural networks (DNNs) and the advent of billions of Internet of Things (IoT) devices have excited an explosive demand for intelligent IoT devices equipped with domain-specific DNN accelerators. However, the deployment of DNN accelerator enabled intelligent functionality into real-world IoT devices still remains particularly challenging. First, powerful DNNs often come at prohibitive complexities, whereas IoT devices often suffer from stringent resource constraints. Second, while DNNs are vulnerable to adversarial attacks especially on IoT devices exposed to complex real-world environments, many IoT applications require strict security. Existing DNN accelerators mostly tackle only one of the two aforementioned challenges (i.e., efficiency or adversarial robustness) while neglecting or even sacrificing the other. To this end, we propose a 2-in-1 Accelerator, an integrated algorithm-accelerator co-design framework aiming at winning both the adversarial robustness and efficiency of DNN accelerators. Specifically, we first propose a Random Precision Switch (RPS) algorithm that can effectively defend DNNs against adversarial attacks by enabling random DNN quantization as an in-situ model switch. Furthermore, we propose a new precision-scalable accelerator featuring (1) a new precision-scalable MAC unit architecture which spatially tiles the temporal MAC units to boost both the achievable efficiency and flexibility and (2) a systematically optimized dataflow that is searched by our generic accelerator optimizer. Extensive experiments and ablation studies validate that our 2-in-1 Accelerator can not only aggressively boost both the adversarial robustness and efficiency of DNN accelerators under various attacks, but also naturally support instantaneous robustness-efficiency trade-offs adapting to varied resources without the necessity of DNN retraining.
376 - Shuo Wang , Zhe Li , Caiwen Ding 2018
Recently, significant accuracy improvement has been achieved for acoustic recognition systems by increasing the model size of Long Short-Term Memory (LSTM) networks. Unfortunately, the ever-increasing size of LSTM model leads to inefficient designs on FPGAs due to the limited on-chip resources. The previous work proposes to use a pruning based compression technique to reduce the model size and thus speedups the inference on FPGAs. However, the random nature of the pruning technique transforms the dense matrices of the model to highly unstructured sparse ones, which leads to unbalanced computation and irregular memory accesses and thus hurts the overall performance and energy efficiency. In contrast, we propose to use a structured compression technique which could not only reduce the LSTM model size but also eliminate the irregularities of computation and memory accesses. This approach employs block-circulant instead of sparse matrices to compress weight matrices and reduces the storage requirement from $mathcal{O}(k^2)$ to $mathcal{O}(k)$. Fast Fourier Transform algorithm is utilized to further accelerate the inference by reducing the computational complexity from $mathcal{O}(k^2)$ to $mathcal{O}(ktext{log}k)$. The datapath and activation functions are quantized as 16-bit to improve the resource utilization. More importantly, we propose a comprehensive framework called C-LSTM to automatically optimize and implement a wide range of LSTM variants on FPGAs. According to the experimental results, C-LSTM achieves up to 18.8X and 33.5X gains for performance and energy efficiency compared with the state-of-the-art LSTM implementation under the same experimental setup, and the accuracy degradation is very small.
The recent breakthroughs and prohibitive complexities of Deep Neural Networks (DNNs) have excited extensive interest in domain-specific DNN accelerators, among which optical DNN accelerators are particularly promising thanks to their unprecedented potential of achieving superior performance-per-watt. However, the development of optical DNN accelerators is much slower than that of electrical DNN accelerators. One key challenge is that while many techniques have been developed to facilitate the development of electrical DNN accelerators, techniques that support or expedite optical DNN accelerator design remain much less explored, limiting both the achievable performance and the innovation development of optical DNN accelerators. To this end, we develop the first-of-its-kind framework dubbed O-HAS, which for the first time demonstrates automated Optical Hardware Accelerator Search for boosting both the acceleration efficiency and development speed of optical DNN accelerators. Specifically, our O-HAS consists of two integrated enablers: (1) an O-Cost Predictor, which can accurately yet efficiently predict an optical accelerators energy and latency based on the DNN model parameters and the optical accelerator design; and (2) an O-Search Engine, which can automatically explore the large design space of optical DNN accelerators and identify the optimal accelerators (i.e., the micro-architectures and algorithm-to-accelerator mapping methods) in order to maximize the target acceleration efficiency. Extensive experiments and ablation studies consistently validate the effectiveness of both our O-Cost Predictor and O-Search Engine as well as the excellent efficiency of O-HAS generated optical accelerators.
Sparse neural networks can greatly facilitate the deployment of neural networks on resource-constrained platforms as they offer compact model sizes while retaining inference accuracy. Because of the sparsity in parameter matrices, sparse neural networks can, in principle, be exploited in accelerator architectures for improved energy-efficiency and latency. However, to realize these improvements in practice, there is a need to explore sparsity-aware hardware-software co-design. In this paper, we propose a novel silicon photonics-based sparse neural network inference accelerator called SONIC. Our experimental analysis shows that SONIC can achieve up to 5.8x better performance-per-watt and 8.4x lower energy-per-bit than state-of-the-art sparse electronic neural network accelerators; and up to 13.8x better performance-per-watt and 27.6x lower energy-per-bit than the best known photonic neural network accelerators.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا