Do you want to publish a course? Click here

TASM: A Tile-Based Storage Manager for Video Analytics

154   0   0.0 ( 0 )
 Added by Maureen Daum
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Modern video data management systems store videos as a single encoded file, which significantly limits possible storage level optimizations. We design, implement, and evaluate TASM, a new tile-based storage manager for video data. TASM uses a feature in modern video codecs called tiles that enables spatial random access into encoded videos. TASM physically tunes stored videos by optimizing their tile layouts given the video content and a query workload. Additionally, TASM dynamically tunes that layout in response to changes in the query workload or if the query workload and video contents are incrementally discovered. Finally, TASM also produces efficient initial tile layouts for newly ingested videos. We demonstrate that TASM can speed up subframe selection queries by an average of over 50% and up to 94%. TASM can also improve the throughput of the full scan phase of object detection queries by up to 2X.



rate research

Read More

We present a new video storage system (VSS) designed to decouple high-level video operations from the low-level details required to store and efficiently retrieve video data. VSS is designed to be the storage subsystem of a video data management system (VDBMS) and is responsible for: (1) transparently and automatically arranging the data on disk in an efficient, granular format; (2) caching frequently-retrieved regions in the most useful formats; and (3) eliminating redundancies found in videos captured from multiple cameras with overlapping fields of view. Our results suggest that VSS can improve VDBMS read performance by up to 54%, reduce storage costs by up to 45%, and enable developers to focus on application logic rather than video storage and retrieval.
Low-cost cameras enable powerful analytics. An unexploited opportunity is that most captured videos remain cold without being queried. For efficiency, we advocate for these cameras to be zero streaming: capturing videos to local storage and communicating with the cloud only when analytics is requested. How to query zero-streaming cameras efficiently? Our response is a camera/cloud runtime system called DIVA. It addresses two key challenges: to best use limited camera resource during video capture; to rapidly explore massive videos during query execution. DIVA contributes two unconventional techniques. (1) When capturing videos, a camera builds sparse yet accurate landmark frames, from which it learns reliable knowledge for accelerating future queries. (2) When executing a query, a camera processes frames in multiple passes with increasingly more expensive operators. As such, DIVA presents and keeps refining inexact query results throughout the querys execution. On diverse queries over 15 videos lasting 720 hours in total, DIVA runs at more than 100x video realtime and outperforms competitive alternative designs. To our knowledge, DIVA is the first system for querying large videos stored on low-cost remote cameras.
Emerging data analysis involves the ingestion and exploration of new data sets, application of complex functions, and frequent query revisions based on observing prior query answers. We call this new type of analysis evolutionary analytics and identify its properties. This type of analysis is not well represented by current benchmark workloads. In this paper, we present a workload and identify several metrics to test system support for evolutionary analytics. Along with our metrics, we present methodologies for running the workload that capture this analytical scenario.
320 - Jisheng Li , Ziyu Wen , Sihan Li 2021
Regular omnidirectional video encoding technics use map projection to flatten a scene from a spherical shape into one or several 2D shapes. Common projection methods including equirectangular and cubic projection have varying levels of interpolation that create a large number of non-information-carrying pixels that lead to wasted bitrate. In this paper, we propose a tile based omnidirectional video segmentation scheme which can save up to 28% of pixel area and 20% of BD-rate averagely compared to the traditional equirectangular projection based approach.
Smart meters are increasingly used worldwide. Smart meters are the advanced meters capable of measuring energy consumption at a fine-grained time interval, e.g., every 15 minutes. Smart meter data are typically bundled with social economic data in analytics, such as meter geographic locations, weather conditions and user information, which makes the data sets very sizable and the analytics complex. Data mining and emerging cloud computing technologies make collecting, processing, and analyzing the so-called big data possible. This paper proposes an innovative ICT-solution to streamline smart meter data analytics. The proposed solution offers an information integration pipeline for ingesting data from smart meters, a scalable platform for processing and mining big data sets, and a web portal for visualizing analytics results. The implemented system has a hybrid architecture of using Spark or Hive for big data processing, and using the machine learning toolkit, MADlib, for doing in-database data analytics in PostgreSQL database. This paper evaluates the key technologies of the proposed ICT-solution, and the results show the effectiveness and efficiency of using the system for both batch and online analytics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا