Do you want to publish a course? Click here

Deception Detection in Group Video Conversations using Dynamic Interaction Networks

136   0   0.0 ( 0 )
 Added by Chongyang Bai
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Detecting groups of people who are jointly deceptive in video conversations is crucial in settings such as meetings, sales pitches, and negotiations. Past work on deception in videos focuses on detecting a single deceiver and uses facial or visual features only. In this paper, we propose the concept of Face-to-Face Dynamic Interaction Networks (FFDINs) to model the interpersonal interactions within a group of people. The use of FFDINs enables us to leverage network relations in detecting group deception in video conversations for the first time. We use a dataset of 185 videos from a deception-based game called Resistance. We first characterize the behavior of individual, pairs, and groups of deceptive participants and compare them to non-deceptive participants. Our analysis reveals that pairs of deceivers tend to avoid mutual interaction and focus their attention on non-deceivers. In contrast, non-deceivers interact with everyone equally. We propose Negative Dynamic Interaction Networks to capture the notion of missing interactions. We create the DeceptionRank algorithm to detect deceivers from NDINs extracted from videos that are just one minute long. We show that our method outperforms recent state-of-the-art computer vision, graph embedding, and ensemble methods by at least 20.9% AUROC in identifying deception from videos.



rate research

Read More

Most work on automated deception detection (ADD) in video has two restrictions: (i) it focuses on a video of one person, and (ii) it focuses on a single act of deception in a one or two minute video. In this paper, we propose a new ADD framework which captures long term deception in a group setting. We study deception in the well-known Resistance game (like Mafia and Werewolf) which consists of 5-8 players of whom 2-3 are spies. Spies are deceptive throughout the game (typically 30-65 minutes) to keep their identity hidden. We develop an ensemble predictive model to identify spies in Resistance videos. We show that features from low-level and high-level video analysis are insufficient, but when combined with a new class of features that we call LiarRank, produce the best results. We achieve AUCs of over 0.70 in a fully automated setting. Our demo can be found at http://home.cs.dartmouth.edu/~mbolonkin/scan/demo/
Modeling sequential interactions between users and items/products is crucial in domains such as e-commerce, social networking, and education. Representation learning presents an attractive opportunity to model the dynamic evolution of users and items, where each user/item can be embedded in a Euclidean space and its evolution can be modeled by an embedding trajectory in this space. However, existing dynamic embedding methods generate embeddings only when users take actions and do not explicitly model the future trajectory of the user/item in the embedding space. Here we propose JODIE, a coupled recurrent neural network model that learns the embedding trajectories of users and items. JODIE employs two recurrent neural networks to update the embedding of a user and an item at every interaction. Crucially, JODIE also models the future embedding trajectory of a user/item. To this end, it introduces a novel projection operator that learns to estimate the embedding of the user at any time in the future. These estimated embeddings are then used to predict future user-item interactions. To make the method scalable, we develop a t-Batch algorithm that creates time-consistent batches and leads to 9x faster training. We conduct six experiments to validate JODIE on two prediction tasks---future interaction prediction and state change prediction---using four real-world datasets. We show that JODIE outperforms six state-of-the-art algorithms in these tasks by at least 20% in predicting future interactions and 12% in state change prediction.
Identifying influential nodes that can jointly trigger the maximum influence spread in networks is a fundamental problem in many applications such as viral marketing, online advertising, and disease control. Most existing studies assume that social influence is static and they fail to capture the dynamics of influence in reality. In this work, we address the dynamic influence challenge by designing efficient streaming methods that can identify influential nodes from highly dynamic node interaction streams. We first propose a general time-decaying dynamic interaction network (TDN) model to model node interaction streams with the ability to smoothly discard outdated data. Based on the TDN model, we design three algorithms, i.e., SieveADN, BasicReduction, and HistApprox. SieveADN identifies influential nodes from a special kind of TDNs with efficiency. BasicReduction uses SieveADN as a basic building block to identify influential nodes from general TDNs. HistApprox significantly improves the efficiency of BasicReduction. More importantly, we theoretically show that all three algorithms enjoy constant factor approximation guarantees. Experiments conducted on various real interaction datasets demonstrate that our approach finds near-optimal solutions with speed at least $5$ to $15$ times faster than baseline methods.
Dynamic networks, also called network streams, are an important data representation that applies to many real-world domains. Many sets of network data such as e-mail networks, social networks, or internet traffic networks are best represented by a dynamic network due to the temporal component of the data. One important application in the domain of dynamic network analysis is anomaly detection. Here the task is to identify points in time where the network exhibits behavior radically different from a typical time, either due to some event (like the failure of machines in a computer network) or a shift in the network properties. This problem is made more difficult by the fluid nature of what is considered normal network behavior. The volume of traffic on a network, for example, can change over the course of a month or even vary based on the time of the day without being considered unusual. Anomaly detection tests using traditional network statistics have difficulty in these scenarios due to their Density Dependence: as the volume of edges changes the value of the statistics changes as well making it difficult to determine if the change in signal is due to the traffic volume or due to some fundamental shift in the behavior of the network. To more accurately detect anomalies in dynamic networks, we introduce the concept of Density-Consistent network statistics. On synthetically generated graphs anomaly detectors using these statistics show a a 20-400% improvement in the recall when distinguishing graphs drawn from different distributions. When applied to several real datasets Density-Consistent statistics recover multiple network events which standard statistics failed to find.
Social media, such as Facebook and Twitter, has become one of the most important channels for information dissemination. However, these social media platforms are often misused to spread rumors, which has brought about severe social problems, and consequently, there are urgent needs for automatic rumor detection techniques. Existing work on rumor detection concentrates more on the utilization of textual features, but diffusion structure itself can provide critical propagating information in identifying rumors. Previous works which have considered structural information, only utilize limited propagation structures. Moreover, few related research has considered the dynamic evolution of diffusion structures. To address these issues, in this paper, we propose a Neural Model using Dynamic Propagation Structures (NM-DPS) for rumor detection in social media. Firstly, we propose a partition approach to model the dynamic evolution of propagation structure and then use temporal attention based neural model to learn a representation for the dynamic structure. Finally, we fuse the structure representation and content features into a unified framework for effective rumor detection. Experimental results on two real-world social media datasets demonstrate the salience of dynamic propagation structure information and the effectiveness of our proposed method in capturing the dynamic structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا