No Arabic abstract
Social media, such as Facebook and Twitter, has become one of the most important channels for information dissemination. However, these social media platforms are often misused to spread rumors, which has brought about severe social problems, and consequently, there are urgent needs for automatic rumor detection techniques. Existing work on rumor detection concentrates more on the utilization of textual features, but diffusion structure itself can provide critical propagating information in identifying rumors. Previous works which have considered structural information, only utilize limited propagation structures. Moreover, few related research has considered the dynamic evolution of diffusion structures. To address these issues, in this paper, we propose a Neural Model using Dynamic Propagation Structures (NM-DPS) for rumor detection in social media. Firstly, we propose a partition approach to model the dynamic evolution of propagation structure and then use temporal attention based neural model to learn a representation for the dynamic structure. Finally, we fuse the structure representation and content features into a unified framework for effective rumor detection. Experimental results on two real-world social media datasets demonstrate the salience of dynamic propagation structure information and the effectiveness of our proposed method in capturing the dynamic structure.
Recent years have seen various rumor diffusion models being assumed in detection of rumor source research of the online social network. Diffusion model is arguably considered as a very important and challengeable factor for source detection in networks but it is less studied. This paper provides an overview of three representative schemes of Independent Cascade-based, Epidemic-based, and Learning-based to model the patterns of rumor propagation as well as three major schemes of estimators for rumor sources since its inception a decade ago.
The contagion dynamics can emerge in social networks when repeated activation is allowed. An interesting example of this phenomenon is retweet cascades where users allow to re-share content posted by other people with public accounts. To model this type of behaviour we use a Hawkes self-exciting process. To do it properly though one needs to calibrate model under consideration. The main goal of this paper is to construct moments method of estimation of this model. The key step is based on identifying of a generator of a Hawkes process. We perform numerical analysis on real data as well.
Nowadays online social networks are used extensively for personal and commercial purposes. This widespread popularity makes them an ideal platform for advertisements. Social media can be used for both direct and word-of-mouth (WoM) marketing. Although WoM marketing is considered more effective and it requires less advertisement cost, it is currently being under-utilized. To do WoM marketing, we need to identify a set of people who can use their authoritative position in social network to promote a given product. In this paper, we show how to do WoM marketing in Facebook group, which is a question answer type of social network. We also present concept of reinforced WoM marketing, where multiple authorities can together promote a product to increase the effectiveness of marketing. We perform our experiments on Facebook group dataset consisting of 0.3 million messages and 10 million user reactions.
In this paper, we propose a new measure to estimate the similarity between brands via posts of brands followers on social network services (SNS). Our method was developed with the intention of exploring the brands that customers are likely to jointly purchase. Nowadays, brands use social media for targeted advertising because influencing users preferences can greatly affect the trends in sales. We assume that data on SNS allows us to make quantitative comparisons between brands. Our proposed algorithm analyzes the daily photos and hashtags posted by each brands followers. By clustering them and converting them to histograms, we can calculate the similarity between brands. We evaluated our proposed algorithm with purchase logs, credit card information, and answers to the questionnaires. The experimental results show that the purchase data maintained by a mall or a credit card company can predict the co-purchase very well, but not the customers willingness to buy products of new brands. On the other hand, our method can predict the users interest on brands with a correlation value over 0.53, which is pretty high considering that such interest to brands are high subjective and individual dependent.
The increasing pervasiveness of social media creates new opportunities to study human social behavior, while challenging our capability to analyze their massive data streams. One of the emerging tasks is to distinguish between different kinds of activities, for example engineered misinformation campaigns versus spontaneous communication. Such detection problems require a formal definition of meme, or unit of information that can spread from person to person through the social network. Once a meme is identified, supervised learning methods can be applied to classify different types of communication. The appropriate granularity of a meme, however, is hardly captured from existing entities such as tags and keywords. Here we present a framework for the novel task of detecting memes by clustering messages from large streams of social data. We evaluate various similarity measures that leverage content, metadata, network features, and their combinations. We also explore the idea of pre-clustering on the basis of existing entities. A systematic evaluation is carried out using a manually curated dataset as ground truth. Our analysis shows that pre-clustering and a combination of heterogeneous features yield the best trade-off between number of clusters and their quality, demonstrating that a simple combination based on pairwise maximization of similarity is as effective as a non-trivial optimization of parameters. Our approach is fully automatic, unsupervised, and scalable for real-time detection of memes in streaming data.