Do you want to publish a course? Click here

Theoretical Modeling of Communication Dynamics

73   0   0.0 ( 0 )
 Added by Torsten Ensslin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Communication is a cornerstone of social interactions, be it with human or artificial intelligence (AI). Yet it can be harmful, depending on the honesty of the exchanged information. To study this, an agent based sociological simulation framework is presented, the reputation game. This illustrates the impact of different communication strategies on the agents reputation. The game focuses on the trustworthiness of the participating agents, their honesty as perceived by others. In the game, each agent exchanges statements with the others about their own and each others honesty, which lets their judgments evolve. Various sender and receiver strategies are studied, like sycophant, egocentricity, pathological lying, and aggressiveness for senders as well as awareness and lack thereof for receivers. Minimalist malicious strategies are identified, like being manipulative, dominant, or destructive, which significantly increase reputation at others costs. Phenomena such as echo chambers, self-deception, deception symbiosis, clique formation, freezing of group opinions emerge from the dynamics. This indicates that the reputation game can be studied for complex group phenomena, to test behavioral hypothesis, and to analyze AI influenced social media. With refined rules it may help to understand social interactions, and to safeguard the design of non-abusive AI systems.



rate research

Read More

We investigate the formation of opinion against authority in an authoritarian society composed of agents with different levels of authority. We explore a dissenting opinion, held by lower-ranking, obedient, or less authoritative people, spreading in an environment of an affirmative opinion held by authoritative leaders. A real-world example would be a corrupt society where people revolt against such leaders, but it can be applied to more general situations. In our model, agents can change their opinion depending on their authority relative to their neighbors and their own confidence level. In addition, with a certain probability, agents can override the affirmative opinion to take the dissenting opinion of a neighbor. Based on analytic derivation and numerical simulations, we observe that both the network structure and heterogeneity in authority, and their correlation, significantly affect the possibility of the dissenting opinion to spread through the population. In particular, the dissenting opinion is suppressed when the authority distribution is very heterogeneous and there exists a positive correlation between the authority and the number of neighbors of people (degree). Except for such an extreme case, though, spreading of the dissenting opinion takes place when people have the tendency to override the authority to hold the dissenting opinion, but the dissenting opinion can take a long time to spread to the entire society, depending on the model parameters. We argue that the internal social structure of agents sets the scale of the time to reach consensus, based on the analysis of the underlying structural properties of opinion spreading.
89 - M. Rosvall , K. Sneppen 2005
This paper introduces a model of self-organization between communication and topology in social networks, with a feedback between different communication habits and the topology. To study this feedback, we let agents communicate to build a perception of a network and use this information to create strategic links. We observe a narrow distribution of links when the communication is low and a system with a broad distribution of links when the communication is high. We also analyze the outcome of chatting, cheating, and lying, as strategies to get better access to information in the network. Chatting, although only adopted by a few agents, gives a global gain in the system. Contrary, a global loss is inevitable in a system with too many liars
The ongoing rapid urbanization phenomena make the understanding of the evolution of urban environments of utmost importance to improve the well-being and steer societies towards better futures. Many studies have focused on the emerging properties of cities, leading to the discovery of scaling laws mirroring, for instance, the dependence of socio-economic indicators on city sizes. Though scaling laws allow for the definition of city-size independent socio-economic indicators, only a few efforts have been devoted to the modeling of the dynamical evolution of cities as mirrored through socio-economic variables and their mutual influence. In this work, we propose a Maximum Entropy (ME), non-linear, generative model of cities. We write in particular a Hamiltonian function in terms of a few macro-economic variables, whose coupling parameters we infer from real data corresponding to French towns. We first discover that non-linear dependencies among different indicators are needed for a complete statistical description of the non-Gaussian correlations among them. Furthermore, though the dynamics of individual cities are far from being stationary, we show that the coupling parameters corresponding to different years turn out to be quite robust. The quasi time-invariance of the Hamiltonian model allows proposing an analytic model for the evolution in time of the macro-economic variables, based on the Langevin equation. Despite no temporal information about the evolution of cities has been used to derive this model, its forecast accuracy of the temporal evolution of the system is compatible to that of a model inferred using explicitly such information.
87 - Xiao-Pu Han , Tao Zhou , 2008
Recently, increasing empirical evidence indicates the extensive existence of heavy tails in the interevent time distributions of various human behaviors. Based on the queuing theory, the Barabasi model and its variations suggest the highest-priority-first protocol a potential origin of those heavy tails. However, some human activity patterns, also displaying the heavy-tailed temporal statistics, could not be explained by a task-based mechanism. In this paper, different from the mainstream, we propose an interest-based model. Both the simulation and analysis indicate a power-law interevent time distribution with exponent -1, which is in accordance with some empirical observations in human-initiated systems.
Severe Acute Respiratory Syndrome-CoronaVirus 2 (SARS-CoV2) caused the ongoing pandemic. This pandemic devastated the world by killing more than a million people, as of October 2020. It is imperative to understand the transmission dynamics of SARS-CoV2 so that novel and interdisciplinary prevention, diagnostic, and therapeutic techniques could be developed. In this work, we model and analyze the transmission of SARS-CoV2 through the human respiratory tract from a molecular communication perspective. We consider that virus diffusion occurs in the mucus layer so that the shape of the tract does not have a significant effect on the transmission. Hence, this model reduces the inherent complexity of the human respiratory system. We further provide the impulse response of SARS-CoV2-ACE2 receptor binding event to determine the proportion of the virus population reaching different regions of the respiratory tract. Our findings confirm the results in the experimental literature on higher mucus flow rate causing virus migration to the lower respiratory tract. These results are especially important to understand the effect of SARS-CoV2 on the different human populations at different ages who have different mucus flow rates and ACE2 receptor concentrations in the different regions of the respiratory tract.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا