Do you want to publish a course? Click here

Analytic Langlands correspondence for PGL(2) on P^1 with parabolic structures over local fields

65   0   0.0 ( 0 )
 Added by Pavel Etingof
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We continue to develop the analytic Langlands program for curves over local fields initiated in arXiv:1908.09677, arXiv:2103.01509 following a suggestion of Langlands and a work of Teschner. Namely, we study the Hecke operators introduced in arXiv:2103.01509 in the case of P^1 over a local field with parabolic structures at finitely many points for the group PGL(2). We establish most of the conjectures of arXiv:1908.09677, arXiv:2103.01509 in this case.



rate research

Read More

We construct analogues of the Hecke operators for the moduli space of G-bundles on a curve X over a local field F with parabolic structures at finitely many points. We conjecture that they define commuting compact normal operators on the Hilbert space of half-densities on this moduli space. In the case F=C, we also conjecture that their joint spectrum is in a natural bijection with the set of opers on X for the Langlands dual group with real monodromy. This may be viewed as an analytic version of the Langlands correspondence for complex curves. Furthermore, we conjecture an explicit formula relating the eigenvalues of the Hecke operators and the global differential operators studied in our previous paper arXiv:1908.09677. Assuming the compactness conjecture, this formula follows from a certain system of differential equations satisfied by the Hecke operators, which we prove in this paper for G=PGL(n).
This paper considers the moduli spaces (stacks) of parabolic bundles (parabolic logarithmic flat bundles with given spectrum, parabolic regular Higgs bundles) with rank 2 and degree 1 over $mathbb{P}^1$ with five marked points. The stratification structures on these moduli spaces (stacks) are investigated. We confirm Simpsons foliation conjecture of moduli space of parabolic logarithmic flat bundles for our case.
Let $K$ be a non-archimedean local field. In the local Langlands correspondence for tori over $K$, we prove an asymptotic result for the depths.
For a scheme $X$ defined over the length $2$ $p$-typical Witt vectors $W_2(k)$ of a characteristic $p$ field, we introduce total $p$-differentials which interpolate between Frobenius-twisted differentials and Buiums $p$-differentials. They form a sheaf over the reduction $X_0$, and behave as if they were the sheaf of differentials of $X$ over a deeper base below $W_2(k)$. This allows us to construct the analogues of Gauss-Manin connections and Kodaira-Spencer classes as in the Katz-Oda formalism. We make connections to Frobenius lifts, Borger-Weilands biring formalism, and Deligne--Illusie classes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا