No Arabic abstract
Structural breaks have been commonly seen in applications. Specifically for detection of change points in time, research gap still remains on the setting in ultra high dimension, where the covariates may bear spurious correlations. In this paper, we propose a two-stage approach to detect change points in ultra high dimension, by firstly proposing the dynamic titled current correlation screening method to reduce the input dimension, and then detecting possible change points in the framework of group variable selection. Not only the spurious correlation between ultra-high dimensional covariates is taken into consideration in variable screening, but non-convex penalties are studied in change point detection in the ultra high dimension. Asymptotic properties are derived to guarantee the asymptotic consistency of the selection procedure, and the numerical investigations show the promising performance of the proposed approach.
Change-points are a routine feature of big data observed in the form of high-dimensional data streams. In many such data streams, the component series possess group structures and it is natural to assume that changes only occur in a small number of all groups. We propose a new change point procedure, called groupInspect, that exploits the group sparsity structure to estimate a projection direction so as to aggregate information across the component series to successfully estimate the change-point in the mean structure of the series. We prove that the estimated projection direction is minimax optimal, up to logarithmic factors, when all group sizes are of comparable order. Moreover, our theory provide strong guarantees on the rate of convergence of the change-point location estimator. Numerical studies demonstrates the competitive performance of groupInspect in a wide range of settings and a real data example confirms the practical usefulness of our procedure.
The variance of noise plays an important role in many change-point detection procedures and the associated inferences. Most commonly used variance estimators require strong assumptions on the true mean structure or normality of the error distribution, which may not hold in applications. More importantly, the qualities of these estimators have not been discussed systematically in the literature. In this paper, we introduce a framework of equivariant variance estimation for multiple change-point models. In particular, we characterize the set of all equivariant unbiased quadratic variance estimators for a family of change-point model classes, and develop a minimax theory for such estimators.
Without imposing prior distributional knowledge underlying multivariate time series of interest, we propose a nonparametric change-point detection approach to estimate the number of change points and their locations along the temporal axis. We develop a structural subsampling procedure such that the observations are encoded into multiple sequences of Bernoulli variables. A maximum likelihood approach in conjunction with a newly developed searching algorithm is implemented to detect change points on each Bernoulli process separately. Then, aggregation statistics are proposed to collectively synthesize change-point results from all individual univariate time series into consistent and stable location estimations. We also study a weighting strategy to measure the degree of relevance for different subsampled groups. Simulation studies are conducted and shown that the proposed change-point methodology for multivariate time series has favorable performance comparing with currently popular nonparametric methods under various settings with different degrees of complexity. Real data analyses are finally performed on categorical, ordinal, and continuous time series taken from fields of genetics, climate, and finance.
Topological Data Analysis (TDA) is a rapidly growing field, which studies methods for learning underlying topological structures present in complex data representations. TDA methods have found recent success in extracting useful geometric structures for a wide range of applications, including protein classification, neuroscience, and time-series analysis. However, in many such applications, one is also interested in sequentially detecting changes in this topological structure. We propose a new method called Persistence Diagram based Change-Point (PD-CP), which tackles this problem by integrating the widely-used persistence diagrams in TDA with recent developments in nonparametric change-point detection. The key novelty in PD-CP is that it leverages the distribution of points on persistence diagrams for online detection of topological changes. We demonstrate the effectiveness of PD-CP in an application to solar flare monitoring.
We introduce a new method for high-dimensional, online changepoint detection in settings where a $p$-variate Gaussian data stream may undergo a change in mean. The procedure works by performing likelihood ratio tests against simple alternatives of different scales in each coordinate, and then aggregating test statistics across scales and coordinates. The algorithm is online in the sense that both its storage requirements and worst-case computational complexity per new observation are independent of the number of previous observations; in practice, it may even be significantly faster than this. We prove that the patience, or average run length under the null, of our procedure is at least at the desired nominal level, and provide guarantees on its response delay under the alternative that depend on the sparsity of the vector of mean change. Simulations confirm the practical effectiveness of our proposal, which is implemented in the R package ocd, and we also demonstrate its utility on a seismology data set.