Do you want to publish a course? Click here

Online High-Dimensional Change-Point Detection using Topological Data Analysis

98   0   0.0 ( 0 )
 Added by Xiaojun Zheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Topological Data Analysis (TDA) is a rapidly growing field, which studies methods for learning underlying topological structures present in complex data representations. TDA methods have found recent success in extracting useful geometric structures for a wide range of applications, including protein classification, neuroscience, and time-series analysis. However, in many such applications, one is also interested in sequentially detecting changes in this topological structure. We propose a new method called Persistence Diagram based Change-Point (PD-CP), which tackles this problem by integrating the widely-used persistence diagrams in TDA with recent developments in nonparametric change-point detection. The key novelty in PD-CP is that it leverages the distribution of points on persistence diagrams for online detection of topological changes. We demonstrate the effectiveness of PD-CP in an application to solar flare monitoring.



rate research

Read More

Structural breaks have been commonly seen in applications. Specifically for detection of change points in time, research gap still remains on the setting in ultra high dimension, where the covariates may bear spurious correlations. In this paper, we propose a two-stage approach to detect change points in ultra high dimension, by firstly proposing the dynamic titled current correlation screening method to reduce the input dimension, and then detecting possible change points in the framework of group variable selection. Not only the spurious correlation between ultra-high dimensional covariates is taken into consideration in variable screening, but non-convex penalties are studied in change point detection in the ultra high dimension. Asymptotic properties are derived to guarantee the asymptotic consistency of the selection procedure, and the numerical investigations show the promising performance of the proposed approach.
88 - Wanrong Zhang , Yajun Mei 2020
In many real-world problems of real-time monitoring high-dimensional streaming data, one wants to detect an undesired event or change quickly once it occurs, but under the sampling control constraint in the sense that one might be able to only observe or use selected components data for decision-making per time step in the resource-constrained environments. In this paper, we propose to incorporate multi-armed bandit approaches into sequential change-point detection to develop an efficient bandit change-point detection algorithm. Our proposed algorithm, termed Thompson-Sampling-Shiryaev-Roberts-Pollak (TSSRP), consists of two policies per time step: the adaptive sampling policy applies the Thompson Sampling algorithm to balance between exploration for acquiring long-term knowledge and exploitation for immediate reward gain, and the statistical decision policy fuses the local Shiryaev-Roberts-Pollak statistics to determine whether to raise a global alarm by sum shrinkage techniques. Extensive numerical simulations and case studies demonstrate the statistical and computational efficiency of our proposed TSSRP algorithm.
Statistical analysis on object data presents many challenges. Basic summaries such as means and variances are difficult to compute. We apply ideas from topology to study object data. We present a framework for using persistence landscapes to vectorize object data and perform statistical analysis. We apply to this pipeline to some biological images that were previously shown to be challenging to study using shape theory. Surprisingly, the most persistent features are shown to be topological noise and the statistical analysis depends on the less persistent features which we refer to as the geometric signal. We also describe the first steps to a new approach to using topology for object data analysis, which applies topology to distributions on object spaces.
130 - Emmanuel Pilliat 2020
This manuscript makes two contributions to the field of change-point detection. In a general change-point setting, we provide a generic algorithm for aggregating local homogeneity tests into an estimator of change-points in a time series. Interestingly, we establish that the error rates of the collection of test directly translate into detection properties of the change-point estimator. This generic scheme is then applied to the problem of possibly sparse multivariate mean change-point detection setting. When the noise is Gaussian, we derive minimax optimal rates that are adaptive to the unknown sparsity and to the distance between change-points. For sub-Gaussian noise, we introduce a variant that is optimal in almost all sparsity regimes.
We introduce a new method for high-dimensional, online changepoint detection in settings where a $p$-variate Gaussian data stream may undergo a change in mean. The procedure works by performing likelihood ratio tests against simple alternatives of different scales in each coordinate, and then aggregating test statistics across scales and coordinates. The algorithm is online in the sense that both its storage requirements and worst-case computational complexity per new observation are independent of the number of previous observations; in practice, it may even be significantly faster than this. We prove that the patience, or average run length under the null, of our procedure is at least at the desired nominal level, and provide guarantees on its response delay under the alternative that depend on the sparsity of the vector of mean change. Simulations confirm the practical effectiveness of our proposal, which is implemented in the R package ocd, and we also demonstrate its utility on a seismology data set.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا