Do you want to publish a course? Click here

Highly accurate digital traffic recording as a basis for future mobility research: Methods and concepts of the research project HDV-Mess

48   0   0.0 ( 0 )
 Added by Laurent Kloeker
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The research project HDV-Mess aims at a currently missing, but very crucial component for addressing important challenges in the field of connected and automated driving on public roads. The goal is to record traffic events at various relevant locations with high accuracy and to collect real traffic data as a basis for the development and validation of current and future sensor technologies as well as automated driving functions. For this purpose, it is necessary to develop a concept for a mobile modular system of measuring stations for highly accurate traffic data acquisition, which enables a temporary installation of a sensor and communication infrastructure at different locations. Within this paper, we first discuss the project goals before we present our traffic detection concept using mobile modular intelligent transport systems stations (ITS-Ss). We then explain the approaches for data processing of sensor raw data to refined trajectories, data communication, and data validation.

rate research

Read More

With the Corridor for New Mobility Aachen - Dusseldorf, an integrated development environment is created, incorporating existing test capabilities, to systematically test and validate automated vehicles in interaction with connected Intelligent Transport Systems Stations (ITS-Ss). This is achieved through a time- and cost-efficient toolchain and methodology, in which simulation, closed test sites as well as test fields in public transport are linked in the best possible way. By implementing a digital twin, the recorded traffic events can be visualized in real-time and driving functions can be tested in the simulation based on real data. In order to represent diverse traffic scenarios, the corridor contains a highway section, a rural area, and urban areas. First, this paper outlines the project goals before describing the individual project contents in more detail. These include the concepts of traffic detection, driving function development, digital twin development, and public involvement.
Industrial processes rely on sensory data for decision-making processes, risk assessment, and performance evaluation. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the dissemination of trustworthy data. For the physical data to be trustworthy, it needs to be cross-validated through multiple sensor sources with overlapping fields of view. Cross-validated data can then be stored on the blockchain, to maintain its integrity and trustworthiness. Once trustworthy data is recorded on the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, Digital Twins (DTs) can be leveraged to draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Empowering DTs with blockchain in industrial use-cases targets key challenges of disparate data repositories, untrustworthy data dissemination, and the need for predictive maintenance. In this survey, while highlighting the key benefits of using blockchain-based DTs, we present a comprehensive review of the state-of-the-art research results for blockchain-based DTs. Based on the current research trends, we discuss a trustworthy blockchain-based DTs framework. We highlight the role of Artificial Intelligence (AI) in blockchain-based DTs. Furthermore, we discuss current and future research and deployment challenges of blockchain-supported DTs that require further investigation.
One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows.
Constraint Satisfaction Problems (CSPs) play a central role in many applications in Artificial Intelligence and Operations Research. In general, solving CSPs is NP-complete. The structure of CSPs is best described by hypergraphs. Therefore, various forms of hypergraph decompositions have been proposed in the literature to identify tractable fragments of CSPs. However, also the computation of a concrete hypergraph decomposition is a challenging task in itself. In this paper, we report on recent progress in the study of hypergraph decompositions and we outline several directions for future research.
We show how faceted search using a combination of traditional classification systems and mixed-membership topic models can go beyond keyword search to inform resource discovery, hypothesis formulation, and argument extraction for interdisciplinary research. Our test domain is the history and philosophy of scientific work on animal mind and cognition. The methods can be generalized to other research areas and ultimately support a system for semi-automatic identification of argument structures. We provide a case study for the application of the methods to the problem of identifying and extracting arguments about anthropomorphism during a critical period in the development of comparative psychology. We show how a combination of classification systems and mixed-membership models trained over large digital libraries can inform resource discovery in this domain. Through a novel approach of drill-down topic modeling---simultaneously reducing both the size of the corpus and the unit of analysis---we are able to reduce a large collection of fulltext volumes to a much smaller set of pages within six focal volumes containing arguments of interest to historians and philosophers of comparative psychology. The volumes identified in this way did not appear among the first ten results of the keyword search in the HathiTrust digital library and the pages bear the kind of close reading needed to generate original interpretations that is the heart of scholarly work in the humanities. Zooming back out, we provide a way to place the books onto a map of science originally constructed from very different data and for different purposes. The multilevel approach advances understanding of the intellectual and societal contexts in which writings are interpreted.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا