Do you want to publish a course? Click here

The HyperTrac Project: Recent Progress and Future Research Directions on Hypergraph Decompositions

67   0   0.0 ( 0 )
 Added by Davide Mario Longo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Constraint Satisfaction Problems (CSPs) play a central role in many applications in Artificial Intelligence and Operations Research. In general, solving CSPs is NP-complete. The structure of CSPs is best described by hypergraphs. Therefore, various forms of hypergraph decompositions have been proposed in the literature to identify tractable fragments of CSPs. However, also the computation of a concrete hypergraph decomposition is a challenging task in itself. In this paper, we report on recent progress in the study of hypergraph decompositions and we outline several directions for future research.



rate research

Read More

Emotions are usually evoked in humans by images. Recently, extensive research efforts have been dedicated to understanding the emotions of images. In this chapter, we aim to introduce image emotion analysis (IEA) from a computational perspective with the focus on summarizing recent advances and suggesting future directions. We begin with commonly used emotion representation models from psychology. We then define the key computational problems that the researchers have been trying to solve and provide supervised frameworks that are generally used for different IEA tasks. After the introduction of major challenges in IEA, we present some representative methods on emotion feature extraction, supervised classifier learning, and domain adaptation. Furthermore, we introduce available datasets for evaluation and summarize some main results. Finally, we discuss some open questions and future directions that researchers can pursue.
With the rapid development of wireless sensor networks, smart devices, and traditional information and communication technologies, there is tremendous growth in the use of Internet of Things (IoT) applications and services in our everyday life. IoT systems deal with high volumes of data. This data can be particularly sensitive, as it may include health, financial, location, and other highly personal information. Fine-grained security management in IoT demands effective access control. Several proposals discuss access control for the IoT, however, a limited focus is given to the emerging blockchain-based solutions for IoT access control. In this paper, we review the recent trends and critical needs for blockchain-based solutions for IoT access control. We identify several important aspects of blockchain, including decentralised control, secure storage and sharing information in a trustless manner, for IoT access control including their benefits and limitations. Finally, we note some future research directions on how to converge blockchain in IoT access control efficiently and effectively.
The increasing need for economic, safe, and sustainable smart manufacturing combined with novel technological enablers, has paved the way for Artificial Intelligence (AI) and Big Data in support of smart manufacturing. This implies a substantial integration of AI, Industrial Internet of Things (IIoT), Robotics, Big data, Blockchain, 5G communications, in support of smart manufacturing and the dynamical processes in modern industries. In this paper, we provide a comprehensive overview of different aspects of AI and Big Data in Industry 4.0 with a particular focus on key applications, techniques, the concepts involved, key enabling technologies, challenges, and research perspective towards deployment of Industry 5.0. In detail, we highlight and analyze how the duo of AI and Big Data is helping in different applications of Industry 4.0. We also highlight key challenges in a successful deployment of AI and Big Data methods in smart industries with a particular emphasis on data-related issues, such as availability, bias, auditing, management, interpretability, communication, and different adversarial attacks and security issues. In a nutshell, we have explored the significance of AI and Big data towards Industry 4.0 applications through panoramic reviews and discussions. We believe, this work will provide a baseline for future research in the domain.
Robots in our daily surroundings are increasing day by day. Their usability and acceptability largely depend on their explicit and implicit interaction capability with fellow human beings. As a result, social behavior is one of the most sought-after qualities that a robot can possess. However, there is no specific aspect and/or feature that defines socially acceptable behavior and it largely depends on the situation, application, and society. In this article, we investigate one such social behavior for collocated robots. Imagine a group of people is interacting with each other and we want to join the group. We as human beings do it in a socially acceptable manner, i.e., within the group, we do position ourselves in such a way that we can participate in the group activity without disturbing/obstructing anybody. To possess such a quality, first, a robot needs to determine the formation of the group and then determine a position for itself, which we humans do implicitly. The theory of f-formation can be utilized for this purpose. As the types of formations can be very diverse, detecting the social groups is not a trivial task. In this article, we provide a comprehensive survey of the existing work on social interaction and group detection using f-formation for robotics and other applications. We also put forward a novel holistic survey framework combining all the possible concerns and modules relevant to this problem. We define taxonomies based on methods, camera views, datasets, detection capabilities and scale, evaluation approaches, and application areas. We discuss certain open challenges and limitations in current literature along with possible future research directions based on this framework. In particular, we discuss the existing methods/techniques and their relative merits and demerits, applications, and provide a set of unsolved but relevant problems in this domain.
Given the current transformative potential of research that sits at the intersection of Deep Learning (DL) and Software Engineering (SE), an NSF-sponsored community workshop was conducted in co-location with the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE19) in San Diego, California. The goal of this workshop was to outline high priority areas for cross-cutting research. While a multitude of exciting directions for future work were identified, this report provides a general summary of the research areas representing the areas of highest priority which were discussed at the workshop. The intent of this report is to serve as a potential roadmap to guide future work that sits at the intersection of SE & DL.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا