No Arabic abstract
Industrial processes rely on sensory data for decision-making processes, risk assessment, and performance evaluation. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the dissemination of trustworthy data. For the physical data to be trustworthy, it needs to be cross-validated through multiple sensor sources with overlapping fields of view. Cross-validated data can then be stored on the blockchain, to maintain its integrity and trustworthiness. Once trustworthy data is recorded on the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, Digital Twins (DTs) can be leveraged to draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Empowering DTs with blockchain in industrial use-cases targets key challenges of disparate data repositories, untrustworthy data dissemination, and the need for predictive maintenance. In this survey, while highlighting the key benefits of using blockchain-based DTs, we present a comprehensive review of the state-of-the-art research results for blockchain-based DTs. Based on the current research trends, we discuss a trustworthy blockchain-based DTs framework. We highlight the role of Artificial Intelligence (AI) in blockchain-based DTs. Furthermore, we discuss current and future research and deployment challenges of blockchain-supported DTs that require further investigation.
This paper presents a comprehensive survey of the existing blockchain protocols for the Internet of Things (IoT) networks. We start by describing the blockchains and summarizing the existing surveys that deal with blockchain technologies. Then, we provide an overview of the application domains of blockchain technologies in IoT, e.g, Internet of Vehicles, Internet of Energy, Internet of Cloud, Fog computing, etc. Moreover, we provide a classification of threat models, which are considered by blockchain protocols in IoT networks, into five main categories, namely, identity-based attacks, manipulation-based attacks, cryptanalytic attacks, reputation-based attacks, and service-based attacks. In addition, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods towards secure and privacy-preserving blockchain technologies with respect to the blockchain model, specific security goals, performance, limitations, computation complexity, and communication overhead. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the blockchain technologies for IoT.
The proliferation of digitization and complexity of connectivity in Cyber-Physical Systems (CPSs) calls for a mechanism that can evaluate the functionality and security of critical infrastructures. In this regard, Digital Twins (DTs) are revolutionizing the CPSs. Driven by asset-centric data, DTs are virtual replicas of physical systems that mirror every facet of a product or process and can provide actionable insights through monitoring, optimization, and prediction. Furthermore, replication and simulation modes in DTs can prevent and detect security flaws in the CPS without obstructing the ongoing operations of the live system. However, such benefits of DTs are based on an assumption about data trust, integrity, and security. Data trustworthiness is considered to be more critical when it comes to the integration and interoperability of multiple components or sub-components among different DTs owned by multiple stakeholders to provide an aggregated view of the complex physical system. Moreover, analyzing the huge volume of data for creating actionable insights in real-time is another critical requirement that demands automation. This article focuses on securing CPSs by integrating Artificial Intelligence (AI) and blockchain for intelligent and trusted DTs. We envision an AI-aided blockchain-based DT framework that can ensure anomaly prevention and detection in addition to responding against novel attack vectors in parallel with the normal ongoing operations of the live systems. We discuss the applicability of the proposed framework for the automotive industry as a CPS use case. Finally, we identify challenges that impede the implementation of intelligence-driven architectures in CPS.
Many future innovative computing services will use Fog Computing Systems (FCS), integrated with Internet of Things (IoT) resources. These new services, built on the convergence of several distinct technologies, need to fulfil time-sensitive functions, provide variable levels of integration with their environment, and incorporate data storage, computation, communications, sensing, and control. There are, however, significant problems to be solved before such systems can be considered fit for purpose. The high heterogeneity, complexity, and dynamics of these resource-constrained systems bring new challenges to their robust and reliable operation, which implies the need for integral resilience management strategies. This paper surveys the state of the art in the relevant fields, and discusses the research issues and future trends that are emerging. We envisage future applications that have very stringent requirements, notably high-precision latency and synchronization between a large set of flows, where FCSs are key to supporting them. Thus, we hope to provide new insights into the design and management of resilient FCSs that are formed by IoT devices, edge computer servers and wireless sensor networks; these systems can be modelled using Game Theory, and flexibly programmed with the latest software and virtualization platforms.
Industrial processes rely on sensory data for critical decision-making processes. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the trustworthiness of data. To this end, we envision a blockchain-based framework for the Industrial Internet of Things (IIoT) to address the issues of data management and security. Once the data collected from trustworthy sources are recorded in the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, we leverage Digital Twins (DTs) that can draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Furthermore, we discuss the integration of DTs and blockchain to target key challenges of disparate data repositories, untrustworthy data dissemination, and fault diagnosis. Finally, we identify outstanding challenges faced by the IIoT and future research directions while leveraging blockchain and DTs.
With the rapid development of wireless sensor networks, smart devices, and traditional information and communication technologies, there is tremendous growth in the use of Internet of Things (IoT) applications and services in our everyday life. IoT systems deal with high volumes of data. This data can be particularly sensitive, as it may include health, financial, location, and other highly personal information. Fine-grained security management in IoT demands effective access control. Several proposals discuss access control for the IoT, however, a limited focus is given to the emerging blockchain-based solutions for IoT access control. In this paper, we review the recent trends and critical needs for blockchain-based solutions for IoT access control. We identify several important aspects of blockchain, including decentralised control, secure storage and sharing information in a trustless manner, for IoT access control including their benefits and limitations. Finally, we note some future research directions on how to converge blockchain in IoT access control efficiently and effectively.