No Arabic abstract
This paper studies an unmanned aerial vehicle (UAV)-assisted wireless network, where a UAV is dispatched to gather information from ground sensor nodes (SN) and transfer the collected data to the depot. The information freshness is captured by the age of information (AoI) metric, whilst the energy consumption of the UAV is seen as another performance criterion. Most importantly, the AoI and energy efficiency are inherently competing metrics, since decreasing the AoI requires the UAV returning to the depot more frequently, leading to a higher energy consumption. To this end, we design UAV paths that optimize these two competing metrics and reveal the Pareto frontier. To formulate this problem, a multi-objective mixed integer linear programming (MILP) is proposed with a flow-based constraint set and we apply Benders decomposition on the proposed formulation. The overall outcome shows that the proposed method allows deriving non-dominated solutions for decision making for UAV based wireless data collection. Numerical results are provided to corroborate our study by presenting the Pareto front of the two objectives and the effect on the UAV trajectory.
In wireless sensor networks (WSNs), utilizing the unmanned aerial vehicle (UAV) as a mobile data collector for the ground sensor nodes (SNs) is an energy-efficient technique to prolong the network lifetime. Specifically, since the UAV can sequentially move close to each of the SNs when collecting data from them and thus reduce the link distance for saving the SNs transmission energy. In this letter, considering a general fading channel model for the SN-UAV links, we jointly optimize the SNs wake-up schedule and UAVs trajectory to minimize the maximum energy consumption of all SNs, while ensuring that the required amount of data is collected reliably from each SN. We formulate our design as a mixed-integer non-convex optimization problem. By applying the successive convex optimization technique, an efficient iterative algorithm is proposed to find a sub-optimal solution. Numerical results show that the proposed scheme achieves significant network energy saving as compared to benchmark schemes.
This work considers unmanned aerial vehicle (UAV) networks for collecting data covertly from ground users. The full-duplex UAV intends to gather critical information from a scheduled user (SU) through wireless communication and generate artificial noise (AN) with random transmit power in order to ensure a negligible probability of the SUs transmission being detected by the unscheduled users (USUs). To enhance the system performance, we jointly design the UAVs trajectory and its maximum AN transmit power together with the user scheduling strategy subject to practical constraints, e.g., a covertness constraint, which is explicitly determined by analyzing each USUs detection performance, and a binary constraint induced by user scheduling. The formulated design problem is a mixed-integer non-convex optimization problem, which is challenging to solve directly, but tackled by our developed penalty successive convex approximation (P-SCA) scheme. An efficient UAV trajectory initialization is also presented based on the Successive Hover-and-Fly (SHAF) trajectory, which also serves as a benchmark scheme. Our examination shows the developed P-SCA scheme significantly outperforms the benchmark scheme in terms of achieving a higher max-min average transmission rate from all the SUs to the UAV.
This work, for the first time, considers confidential data collection in the context of unmanned aerial vehicle (UAV) wireless networks, where the scheduled ground sensor node (SN) intends to transmit confidential information to the UAV without being intercepted by other unscheduled ground SNs. Specifically, a full-duplex (FD) UAV collects data from each scheduled SN on the ground and generates artificial noise (AN) to prevent the scheduled SNs confidential information from being wiretapped by other unscheduled SNs. We first derive the reliability outage probability (ROP) and secrecy outage probability (SOP) of a considered fixed-rate transmission, based on which we formulate an optimization problem that maximizes the minimum average secrecy rate (ASR) subject to some specific constraints. We then transform the formulated optimization problem into a convex problem with the aid of first-order restrictive approximation technique and penalty method. The resultant problem is a generalized nonlinear convex programming (GNCP) and solving it directly still leads to a high complexity, which motivates us to further approximate this problem as a second-order cone program (SOCP) in order to reduce the computational complexity. Finally, we develop an iteration procedure based on penalty successive convex approximation (P-SCA) algorithm to pursue the solution to the formulated optimization problem. Our examination shows that the developed joint design achieves a significant performance gain compared to a benchmark scheme.
Unmanned aerial vehicles (UAVs) can enhance the performance of cellular networks, due to their high mobility and efficient deployment. In this paper, we present a first study on how the user mobility affects the UAVs trajectories of a multiple-UAV assisted wireless communication system. Specifically, we consider the UAVs are deployed as aerial base stations to serve ground users who move between different regions. We maximize the throughput of ground users in the downlink communication by optimizing the UAVs trajectories, while taking into account the impact of the user mobility, propulsion energy consumption, and UAVs mutual interference. We formulate the problem as a route selection problem in an acyclic directed graph. Each vertex represents a task associated with a reward on the average user throughput in a region-time point, while each edge is associated with a cost on the energy propulsion consumption during flying and hovering. For the centralized trajectory design, we first propose the shortest path scheme that determines the optimal trajectory for the single UAV case. We also propose the centralized route selection (CRS) scheme to systematically compute the optimal trajectories for the more general multiple-UAV case. Due to the NP-hardness of the centralized problem, we consider the distributed trajectory design that each UAV selects its trajectory autonomously and propose the distributed route selection (DRS) scheme, which will converge to a pure strategy Nash equilibrium within a finite number of iterations.
Unmanned Aerial Vehicles (UAVs) have been emerging as an effective solution for IoT data collection networks thanks to their outstanding flexibility, mobility, and low operation costs. However, due to the limited energy and uncertainty from the data collection process, speed control is one of the most important factors to optimize the energy usage efficiency and performance for UAV collectors. This work aims to develop a novel autonomous speed control approach to address this issue. To that end, we first formulate the dynamic speed control task of a UAV as a Markov decision process taking into account its energy status and location. In this way, the Q-learning algorithm can be adopted to obtain the optimal speed control policy for the UAV. To further improve the system performance, we develop an highly-effective deep dueling double Q-learning algorithm utilizing outstanding features of the deep neural networks as well as advanced dueling architecture to quickly stabilize the learning process and obtain the optimal policy. Through simulation results, we show that our proposed solution can achieve up to 40% greater performance compared with other conventional methods. Importantly, the simulation results also reveal significant impacts of UAVs energy and charging time on the system performance.