Do you want to publish a course? Click here

Energy-Efficient Data Collection in UAV Enabled Wireless Sensor Network

76   0   0.0 ( 0 )
 Added by Yong Zeng
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In wireless sensor networks (WSNs), utilizing the unmanned aerial vehicle (UAV) as a mobile data collector for the ground sensor nodes (SNs) is an energy-efficient technique to prolong the network lifetime. Specifically, since the UAV can sequentially move close to each of the SNs when collecting data from them and thus reduce the link distance for saving the SNs transmission energy. In this letter, considering a general fading channel model for the SN-UAV links, we jointly optimize the SNs wake-up schedule and UAVs trajectory to minimize the maximum energy consumption of all SNs, while ensuring that the required amount of data is collected reliably from each SN. We formulate our design as a mixed-integer non-convex optimization problem. By applying the successive convex optimization technique, an efficient iterative algorithm is proposed to find a sub-optimal solution. Numerical results show that the proposed scheme achieves significant network energy saving as compared to benchmark schemes.



rate research

Read More

In this paper, we consider a scenario where an unmanned aerial vehicle (UAV) collects data from a set of sensors on a straight line. The UAV can either cruise or hover while communicating with the sensors. The objective is to minimize the UAVs total flight time from a starting point to a destination while allowing each sensor to successfully upload a certain amount of data using a given amount of energy. The whole trajectory is divided into non-overlapping data collection intervals, in each of which one sensor is served by the UAV. The data collection intervals, the UAVs speed and the sensors transmit powers are jointly optimized. The formulated flight time minimization problem is difficult to solve. We first show that when only one sensor is present, the sensors transmit power follows a water-filling policy and the UAVs speed can be found efficiently by bisection search. Then, we show that for the general case with multiple sensors, the flight time minimization problem can be equivalently reformulated as a dynamic programming (DP) problem. The subproblem involved in each stage of the DP reduces to handle the case with only one sensor node. Numerical results present insightful behaviors of the UAV and the sensors. Specifically, it is observed that the UAVs optimal speed is proportional to the given energy of the sensors and the inter-sensor distance, but inversely proportional to the data upload requirement.
This work considers unmanned aerial vehicle (UAV) networks for collecting data covertly from ground users. The full-duplex UAV intends to gather critical information from a scheduled user (SU) through wireless communication and generate artificial noise (AN) with random transmit power in order to ensure a negligible probability of the SUs transmission being detected by the unscheduled users (USUs). To enhance the system performance, we jointly design the UAVs trajectory and its maximum AN transmit power together with the user scheduling strategy subject to practical constraints, e.g., a covertness constraint, which is explicitly determined by analyzing each USUs detection performance, and a binary constraint induced by user scheduling. The formulated design problem is a mixed-integer non-convex optimization problem, which is challenging to solve directly, but tackled by our developed penalty successive convex approximation (P-SCA) scheme. An efficient UAV trajectory initialization is also presented based on the Successive Hover-and-Fly (SHAF) trajectory, which also serves as a benchmark scheme. Our examination shows the developed P-SCA scheme significantly outperforms the benchmark scheme in terms of achieving a higher max-min average transmission rate from all the SUs to the UAV.
78 - Xiaobo Zhou , Shihao Yan , Min Li 2020
This work, for the first time, considers confidential data collection in the context of unmanned aerial vehicle (UAV) wireless networks, where the scheduled ground sensor node (SN) intends to transmit confidential information to the UAV without being intercepted by other unscheduled ground SNs. Specifically, a full-duplex (FD) UAV collects data from each scheduled SN on the ground and generates artificial noise (AN) to prevent the scheduled SNs confidential information from being wiretapped by other unscheduled SNs. We first derive the reliability outage probability (ROP) and secrecy outage probability (SOP) of a considered fixed-rate transmission, based on which we formulate an optimization problem that maximizes the minimum average secrecy rate (ASR) subject to some specific constraints. We then transform the formulated optimization problem into a convex problem with the aid of first-order restrictive approximation technique and penalty method. The resultant problem is a generalized nonlinear convex programming (GNCP) and solving it directly still leads to a high complexity, which motivates us to further approximate this problem as a second-order cone program (SOCP) in order to reduce the computational complexity. Finally, we develop an iteration procedure based on penalty successive convex approximation (P-SCA) algorithm to pursue the solution to the formulated optimization problem. Our examination shows that the developed joint design achieves a significant performance gain compared to a benchmark scheme.
We study a wireless ad-hoc sensor network (WASN) where $N$ sensors gather data from the surrounding environment and transmit their sensed information to $M$ fusion centers (FCs) via multi-hop wireless communications. This node deployment problem is formulated as an optimization problem to make a trade-off between the sensing uncertainty and energy consumption of the network. Our primary goal is to find an optimal deployment of sensors and FCs to minimize a Lagrange combination of the sensing uncertainty and energy consumption. To support arbitrary routing protocols in WASNs, the routing-dependent necessary conditions for the optimal deployment are explored. Based on these necessary conditions, we propose a routing-aware Lloyd algorithm to optimize node deployment. Simulation results show that, on average, the proposed algorithm outperforms the existing deployment algorithms.
69 - Peiming Li , Jie Xu 2018
Unmanned aerial vehicles (UAVs) have emerged as a promising solution to provide wireless data access for ground users in various applications (e.g., in emergence situations). This paper considers a UAV-enabled wireless network, in which multiple UAVs are deployed as aerial base stations (BSs) to serve users distributed on the ground. Different from prior works that ignore UAVs backhaul connections, we practically consider that these UAVs are connected to the core network through a ground gateway node via rate-limited multi-hop wireless backhauls. We also consider that the air-to-ground (A2G) access links from UAVs to users and the air-to-air (A2A) backhaul links among UAVs are operated over orthogonal frequency bands. Under this setup, we aim to maximize the common (or minimum) throughput among all the ground users in the downlink of this network subject to the flow conservation constraints at the UAVs, by optimizing the UAVs deployment locations, jointly with the bandwidth and power allocation of both the access and backhaul links. However, the common throughput maximization is a non-convex optimization problem that is difficult to be solved optimally. To tackle this issue, we use the techniques of alternating optimization and successive convex programming (SCP) to obtain a locally optimal solution. Numerical results show that the proposed design significantly improves the common throughput among all ground users as compared to other benchmark schemes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا