No Arabic abstract
In present paper, we search the existence of dark energy scalar field models within in $f(R, T)$ gravity theory established by Harko et al. (Phys. Rev. D 84, 024020, 2011) in a flat FRW universe. The correspondence between scalar field models have been examined by employing new generalized dynamical cosmological term $ Lambda(t) $. In this regards, the best fit observational values of parameters from three distinct sets data are applied. To decide the solution to field equations, a scale factor $ a= left(sinh(beta t)right)^{1/n} $ has been considered, where $ beta$ & $n $ are constants. Here, we employ the recent ensues ($H_{0}=69.2$ and $q_{0}=-0.52)$ from (OHD+JLA) observation (Yu et al., Astrophys. J. 856, 3, 2018). Through the numerical estimation and graphical assessing of various cosmological parameters, it has been experienced that findings are comparable with kinematics and physical properties of universe and compatible with recent cosmological ensues. The dynamics and potentials of scalar fields are clarified in FRW scenario in the present model. Potentials reconstruction is highly reasonable and shows a periodic establishment and in agreement with latest observations.
Recent elaborated by T. Harko and collaborators, the $f(R,T)$ theories of gravity contemplate an optimistic alternative to dark energy, for which $R$ and $T$ stand for the Ricci scalar and the trace of the energy-momentum tensor, respectively. Although the literature has shown that the $T$ dependence on the gravitational part of the action - which is due to the consideration of quantum effects - may induce some novel features in the scope of late-time cosmological dynamics, in the radiation-dominated universe, when $T=0$, no contributions seem to rise from such theories. Apparently, $f(R,T)$ contributions to a radiation-dominated universe may rise only from the $f(R,T^varphi)$ approach, which is nothing but the $f(R,T)$ gravity in the case of a self-interacting scalar field whose trace of the energy-momentum tensor is $T^varphi$. We intend, in this article, to show how $f(R,T^varphi)$ theories of gravity can contribute to the study of the primordial stages of the universe. Our results predict a graceful exit from inflationary stage to a radiation-dominated era. They also predict a late-time cosmic acceleration after a matter-dominated phase, making the $f(R,T^varphi)$ theories able to describe, in a self-consistent way, all the different stages of the universe dynamics.
The recent article entitled Cosmological inviability of $f(R,T)$ gravity [Phys. Rev. D 95 (2017) 123536], by H. Velten and T.R.P. Caram^es, claims that the reference A transition from a decelerated to an accelerated phase of the universe expansion from the simplest non-trivial polynomial function of T in the f(R,T) formalism by P.H.R.S. Moraes, G. Ribeiro and R.A.C. Correa [Astrophys. Space Sci. 361 (2016) 227] has problematic points concerning its mathematical approach and observable consequences. Velten and Caram^es argue that the equation of the scale factor evolution in time in the $f(R,T)=R+alpha T+beta T^{2}$ cosmology was erroneously calculated. One crucial consequence of the supposed corrected version of such an equation, presented by the authors in [Phys. Rev. D 95 (2017) 123536], would be the absence of the transition from a decelerated to an accelerated phase of the expansion of the universe, an outcome originally predicted by Moraes, Ribeiro and Correa. We show that the above claim is incorrect and that there are no inconsistencies with the results by Moraes, Ribeiro and Correa in the referred work. In particular, we show that Velten and Caram^es have incorrectly performed their calculations, invalidating all their mathematical and physical criticism regarding the article by Moraes, Ribeiro and Correa. In addition, we quote that the solutions obtained by Velten and Caram^es are unfeasible in view of their mathematical misunderstanding.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor and $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
For the accurate understanding of compact objects such as neutron stars and strange stars, the Tolmann-Openheimer-Volkof (TOV) equation has proved to be of great use. Hence, in this work, we obtain the TOV equation for the energy-momentum-conserved $f(R,T)$ theory of gravity to study strange quark stars. The $f(R,T)$ theory is important, especially in cosmology, because it solves certain incompleteness of the standard model. In general, there is no intrinsic conservation of the energy-momentum tensor in the $f(R,T)$ gravity. Since this conservation is important in the astrophysical context, we impose the condition $ abla T_{mu u}=0$, so that we obtain a function $f(R,T)$ that implies conservation. This choice of a function $f(R,T)$ that conserves the momentum-energy tensor gives rise to a strong link between gravity and the microphysics of the compact object. We obtain the TOV by taking into account a linear equation of state to describe the matter inside strange stars, such as $p=omegarho$ and the MIT bag model $p=omega(rho-4B)$. With these assumptions it was possible to derive macroscopic properties of these objects.
In this paper we study cosmological solutions of the $f(T,B)$ gravity using dynamical system analyses. For this purpose we consider cosmological viable functions of $f(T,B)$ that are capable of reproducing the dynamics of the Universe. We present three specific models of $f(T,B)$ gravity which have a general form of the solutions by writing the equations of motion as an autonomous system. Finally, we study its hyperbolic critical points and general trajectories in the phase space of the resulting dynamical variables which are compatible with the current late-time observations.