Do you want to publish a course? Click here

Comment on Cosmological inviability of $f(R,T)$ gravity

66   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent article entitled Cosmological inviability of $f(R,T)$ gravity [Phys. Rev. D 95 (2017) 123536], by H. Velten and T.R.P. Caram^es, claims that the reference A transition from a decelerated to an accelerated phase of the universe expansion from the simplest non-trivial polynomial function of T in the f(R,T) formalism by P.H.R.S. Moraes, G. Ribeiro and R.A.C. Correa [Astrophys. Space Sci. 361 (2016) 227] has problematic points concerning its mathematical approach and observable consequences. Velten and Caram^es argue that the equation of the scale factor evolution in time in the $f(R,T)=R+alpha T+beta T^{2}$ cosmology was erroneously calculated. One crucial consequence of the supposed corrected version of such an equation, presented by the authors in [Phys. Rev. D 95 (2017) 123536], would be the absence of the transition from a decelerated to an accelerated phase of the expansion of the universe, an outcome originally predicted by Moraes, Ribeiro and Correa. We show that the above claim is incorrect and that there are no inconsistencies with the results by Moraes, Ribeiro and Correa in the referred work. In particular, we show that Velten and Caram^es have incorrectly performed their calculations, invalidating all their mathematical and physical criticism regarding the article by Moraes, Ribeiro and Correa. In addition, we quote that the solutions obtained by Velten and Caram^es are unfeasible in view of their mathematical misunderstanding.



rate research

Read More

We derive the full set of field equations for the Metric-Affine version of the Myrzakulov gravity model and also extend this family of theories to a broader one. More specifically, we consider theories whose gravitational Lagrangian is given by $F(R,T,Q, {cal T},{cal D})$ where $T$, $Q$ are the torsion and non-metricity scalars, ${cal T}$ is the trace of the energy-momentum tensor and ${cal D}$ the divergence of the dilation current. We then consider the linear case of the aforementioned theory and assuming a cosmological setup we obtain the modified Friedmann equations. In addition, focusing on the vanishing non-metricity sector and considering matter coupled to torsion we obtain the complete set of equations describing the cosmological behaviour of this model along with solutions.
In this paper, we employ mimetic $f(R,T)$ gravity coupled with Lagrange multiplier and mimetic potential to yield viable inflationary cosmological solutions consistent with latest Planck and BICEP2/Keck Array data. We present here three viable inflationary solutions of the Hubble parameter ($H$) represented by $H(N)=left(A exp beta N+B alpha ^Nright)^{gamma }$, $H(N)=left(A alpha ^N+B log Nright)^{gamma }$, and $H(N)=left(A e^{beta N}+B log Nright)^{gamma }$, where $A$, $beta$, $B$, $alpha$, $gamma$ are free parameters, and $N$ represents the number of e-foldings. We carry out the analysis with the simplest minimal $f(R,T)$ function of the form $f(R,T)= R + chi T$, where $chi$ is the model parameter. We report that for the chosen $f(R,T)$ gravity model, viable cosmologies are obtained compatible with observations by conveniently setting the Lagrange multiplier and the mimetic potential.
We present a traversable wormhole solution using the traceless $f(R,T)$ theory of gravity. In the $f(R,T)$ gravity, the Ricci scalar $R$ in the Einstein-Hilbert action is replaced by a function of $R$ and trace of the energy momentum tensor $T$. The traceless version of the $f(R,T)$ gravity gives rise to a possible wormhole geometry without need for exotic matter, which violates the principle of causality. Using a physically plausible ansatz for the wormholes shape function, the traceless field equations lead to compliance with the weak energy condition at very well defined intervals of the coupling constant $lambda$ in the $f(R,T)=R+2lambda T$ form. Our solution leads to other well-behaved energy conditions considering some possible values of the parameter $omega$ in the equation of state $p_r=omega rho$, with $p_r$ being the radial pressure and $rho $ the density. The energy conditions are obeyed in the ranges $lambda < -4pi$ and $omega > -1$. Through the calculation of the Volume Integral Quantifier, one sees that this wormholes can be traversable and respect the causality, since the amount of exotic matter in its interior can be arbitrarily small.
The article communicates an alternative route to suffice the late-time acceleration considering a bulk viscous fluid with viscosity coefficient $zeta =zeta _{0}+ zeta _{1} H + zeta _{2} H^{2}$, where $zeta _{0}, zeta _{1}, zeta _{2}$ are constants in the framework of $f(R,T)$ modified gravity. We presume the $f(R,T)$ functional form to be $f=R+2alpha T$ where $alpha$ is a constant. We then solve the field equations for the Hubble Parameter and study the cosmological dynamics of kinematic variables such as deceleration, jerk, snap and lerk parameters as a function of cosmic time. We observe the deceleration parameter to be highly sensitive to $alpha$ and undergoes a signature flipping at around $tsim 10$ Gyrs for $alpha=-0.179$ which is favored by observations. The EoS parameter for our model assumes values close to $-1$ at $t_{0}=13.7$Gyrs which is in remarkable agreement with the latest Planck measurements. Next, we study the evolution of energy conditions and find that our model violate the Strong Energy Condition in order to explain the late-time cosmic acceleration. To understand the nature of dark energy mimicked by the bulk viscous baryonic fluid, we perform some geometrical diagnostics like the ${r,s}$ and ${r,q}$ plane. We found the model to mimic the nature of a Chaplygin gas type dark energy model at early times while a Quintessence type in distant future. Finally, we study the violation of continuity equation for our model and show that in order to explain the cosmic acceleration at the present epoch, energy-momentum must violate.
Wormholes are a solution for General Relativity field equations which characterize a passage or a tunnel that connects two different regions of space-time and is filled by some sort of exotic matter, that does not satisfy the energy conditions. On the other hand, it is known that in extended theories of gravity, the extra degrees of freedom once provided may allow the energy conditions to be obeyed and, consequently, the matter content of the wormhole to be non-exotic. In this work, we obtain, as a novelty in the literature, solutions for charged wormholes in the $f(R,T)$ extended theory of gravity. We show that the presence of charge in these objects may be a possibility to respect some stability conditions for their metric. Also, remarkably, the energy conditions are respected in the present approach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا